HDR-ExpandNet 项目使用教程

HDR-ExpandNet 项目使用教程

hdr-expandnet Training and inference code for ExpandNet hdr-expandnet 项目地址: https://gitcode.com/gh_mirrors/hd/hdr-expandnet

1. 项目介绍

HDR-ExpandNet 是一个用于从低动态范围(LDR)图像生成高动态范围(HDR)图像的深度卷积神经网络项目。该项目由 Demetris Marnerides、Thomas Bashford-Rogers、Jonathan Hatchett 和 Kurt Debattista 开发,并在 Eurographics 2018 上发表。该项目的主要目标是提供一个高效的工具,用于将 LDR 图像转换为 HDR 图像,从而增强图像的动态范围和细节。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了以下依赖项:

  • Python >= 3.6
  • PyTorch
  • OpenCV

你可以使用以下命令安装 OpenCV:

conda install opencv3 -c menpo

2.2 下载项目

使用 Git 克隆项目到本地:

git clone https://github.com/dmarnerides/hdr-expandnet.git
cd hdr-expandnet

2.3 运行示例

使用以下命令将 LDR 图像转换为 HDR 图像:

python expand.py ldr_input.jpg

你也可以批量处理多个图像:

python expand.py *.jpg

2.4 自定义设置

你可以通过添加参数来调整输出图像的尺寸和文件名标签:

python expand.py test.jpg --resize True --height 960 --width 540 --tag my-tag

3. 应用案例和最佳实践

3.1 图像增强

HDR-ExpandNet 可以用于增强低质量图像的细节和动态范围。例如,在摄影后期处理中,可以使用该工具将普通照片转换为具有更高动态范围的图像,从而提升视觉效果。

3.2 视频处理

虽然 HDR-ExpandNet 主要设计用于静态图像,但它也可以用于处理视频。你可以使用 --video True 参数来尝试视频转换,尽管这可能会非常慢且消耗大量内存。

3.3 最佳实践

  • 使用 GPU:如果系统支持,建议使用 GPU 进行处理,以提高处理速度。
  • 调整参数:根据输入图像的分辨率和质量,适当调整 --patch_size 参数以优化内存使用。

4. 典型生态项目

4.1 OpenCV

OpenCV 是一个开源的计算机视觉库,广泛用于图像处理和计算机视觉任务。HDR-ExpandNet 依赖于 OpenCV 进行图像的读取和处理。

4.2 PyTorch

PyTorch 是一个深度学习框架,提供了强大的工具来构建和训练神经网络。HDR-ExpandNet 使用 PyTorch 来实现其深度卷积神经网络模型。

4.3 OpenHDR

OpenHDR 是一个在线 HDR 图像查看器,支持多种色调映射功能。你可以使用 OpenHDR 来查看和调整 HDR-ExpandNet 生成的 HDR 图像。

通过以上步骤,你可以快速上手并使用 HDR-ExpandNet 项目进行图像和视频的 HDR 转换。希望这个教程对你有所帮助!

hdr-expandnet Training and inference code for ExpandNet hdr-expandnet 项目地址: https://gitcode.com/gh_mirrors/hd/hdr-expandnet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邬楠满Seaman

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值