Intel® NPU 加速库使用教程
1. 项目介绍
Intel® NPU 加速库是一个 Python 库,旨在通过利用 Intel 神经处理单元 (NPU) 的强大功能来提高应用程序的效率。NPU 是集成在 Intel Core Ultra 处理器中的 AI 加速器,具有独特的架构,包括计算加速和数据传输能力。该库通过先进的编译器技术优化 AI 工作负载,确保 AI 任务的并行执行,并最大化计算利用率。
2. 项目快速启动
安装
首先,确保您的系统中有一个可用的 NPU。然后,您可以使用 pip 安装该库:
pip install intel-npu-acceleration-library
运行一个 LLaMA 模型
以下是一个简单的脚本,用于在 NPU 上运行一个 LLaMA 模型:
from transformers import AutoTokenizer, TextStreamer
from intel_npu_acceleration_library import NPUModelForCausalLM
import torch
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
model = NPUModelForCausalLM.from_pretrained(model_id, use_cache=True, dtype=torch.int8).eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, use_default_system_prompt=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
query = input("Ask something: ")
prefix = tokenizer(query, return_tensors="pt")["input_ids"]
generation_kwargs = dict(
input_ids=prefix,
streamer=streamer,
do_sample=True,
top_k=50,
top_p=0.9,
max_new_tokens=512,
)
print("Run inference")
_ = model.generate(**generation_kwargs)
3. 应用案例和最佳实践
应用案例
- 大型语言模型 (LLM) 解码:使用 NPU 加速库可以显著提高 LLM 模型的解码速度,适用于自然语言处理任务。
- 矩阵乘法:通过 NPU 加速库,可以高效地执行矩阵乘法操作,适用于机器学习和深度学习中的各种计算任务。
最佳实践
- 优化数据传输:利用 NPU 的 DMA 引擎,确保数据在系统内存和缓存之间的高效传输。
- 并行执行:通过编译器技术,确保 AI 任务的并行执行,最大化计算资源的利用率。
4. 典型生态项目
- Intel AI PC:Intel AI PC 是一个集成了 NPU 的计算平台,适用于各种 AI 应用场景。
- Intel Core Ultra 处理器:这些处理器集成了 NPU,提供了强大的 AI 计算能力。
- OpenVINO 和 DirectML:这些是 Intel 提供的生产就绪的 AI 加速解决方案,与 NPU 加速库结合使用,可以进一步提升性能。
通过以上内容,您可以快速了解并开始使用 Intel® NPU 加速库,结合实际应用案例和最佳实践,充分发挥 NPU 的计算潜力。