RAGEN:开启LLM推理Agent新纪元

RAGEN:开启LLM推理Agent新纪元

RAGEN RAGEN is the first open-source reproduction of DeepSeek-R1 for training agentic models via reinforcement learning. RAGEN 项目地址: https://gitcode.com/gh_mirrors/ra/RAGEN

项目介绍

RAGEN(Training Agents by Reinforcing Reasoning)是一个利用强化学习(Reinforcement Learning, RL)训练大型语言模型(Large Language Model, LLM)推理Agent的开源项目。该项目致力于在交互式、随机环境中提升LLM的推理能力,为实现人工智能的更进一步发展奠定了基础。

RAGEN的核心是Reason-Interaction Chain Optimization(RICO)算法,该算法能够优化整个轨迹分布,使Agent在复杂环境中做出更加合理的决策。通过该项目,研究者可以探索LLM与Agent结合在推理任务上的无限可能。

项目技术分析

RAGEN项目在技术上进行了多项创新。首先,它将Agent与环境之间的交互形式化为Markov Decision Process(MDP),其中状态和动作都是令牌序列,使LLM能够对环境动态进行推理。其次,RICO算法通过交替进行推理-交互链生成和多元轨迹优化,实现了长距离推理和计算效率的平衡。

此外,RAGEN还引入了三种渐进式奖励归一化策略(ARPO、BRPO、GRPO),以稳定训练过程。这些技术亮点使得RAGEN在LLM推理Agent领域具有显著的竞争力。

项目及应用场景

RAGEN的应用场景广泛,特别是在需要复杂推理和决策的任务中,如智能对话系统、游戏AI、自动化推理等。以下是几个具体的应用场景:

  1. 智能对话系统:RAGEN可以用于训练对话系统,使其在与用户的交互中具备更好的推理能力,提供更加准确和自然的回答。
  2. 游戏AI:在复杂、动态的游戏环境中,RAGEN可以训练Agent进行合理的策略规划和执行。
  3. 自动化推理:RAGEN可以应用于自动化推理任务,如数学问题解答、编程任务等,提高系统的推理质量和效率。

项目特点

RAGEN项目具有以下显著特点:

  1. 强化学习与LLM结合:利用强化学习框架训练LLM,使其具备推理能力,为解决复杂问题提供了新思路。
  2. 全轨迹优化:RICO算法优化整个轨迹分布,而不是简单的单步优化,有助于提高Agent的决策质量。
  3. 奖励归一化策略:多种奖励归一化策略使得训练过程更加稳定,提高了模型的泛化能力。
  4. 易于扩展:RAGEN提供了灵活的框架和丰富的接口,便于研究人员进行扩展和定制。

以下是详细的项目推荐文章:


RAGEN:开启LLM推理Agent新纪元

在人工智能领域,强化学习(Reinforcement Learning, RL)和大型语言模型(Large Language Model, LLM)一直是研究的热点。RAGEN(Training Agents by Reinforcing Reasoning)项目巧妙地将这两者结合起来,为训练具有推理能力的LLM Agent提供了新的视角和工具。

RAGEN:项目的核心功能

RAGEN的核心功能是利用强化学习训练LLM推理Agent。在交互式、随机环境中,RAGEN通过RICO算法优化整个轨迹分布,实现推理与决策的联合优化。

项目介绍

RAGEN项目的目标是提升LLM在复杂环境中的推理能力。它通过MDP形式化Agent与环境交互,并引入RICO算法来优化推理-交互链。此外,项目还提供了三种渐进式奖励归一化策略,以稳定训练过程。

项目技术分析

RAGEN的技术创新主要体现在以下几个方面:

  1. MDP形式化:将Agent与环境交互形式化为MDP,使LLM能够对环境动态进行推理。
  2. RICO算法:通过交替进行推理-交互链生成和多元轨迹优化,实现长距离推理和计算效率的平衡。
  3. 奖励归一化策略:三种归一化策略(ARPO、BRPO、GRPO)帮助稳定训练过程,提高模型泛化能力。

项目技术应用场景

RAGEN的应用场景十分广泛,以下是一些具体的应用实例:

  1. 智能对话系统:通过RAGEN训练的对话系统能够在与用户的交互中展现出更好的推理能力,提供更加自然和准确的回答。
  2. 游戏AI:在复杂的游戏环境中,RAGEN可以帮助Agent进行合理的策略规划和执行,提升游戏体验。
  3. 自动化推理:RAGEN可以应用于数学问题解答、编程任务等自动化推理场景,提高系统解决问题的能力。

项目特点

RAGEN项目具有以下显著特点:

  1. 强化学习与LLM结合:RAGEN利用强化学习框架训练LLM,使其具备推理能力,为解决复杂问题提供了新思路。
  2. 全轨迹优化:RICO算法的全轨迹优化策略有助于Agent在复杂环境中做出更加合理的决策。
  3. 奖励归一化策略:多种奖励归一化策略使得训练过程更加稳定,有助于模型更好地适应不同任务和环境。
  4. 易于扩展:RAGEN提供了灵活的框架和丰富的接口,便于研究人员根据具体需求进行定制和扩展。

RAGEN项目的出现为LLM推理Agent领域带来了新的可能性。通过结合强化学习和LLM,RAGEN不仅提高了Agent的推理能力,也为未来的研究和应用打开了新的大门。我们期待RAGEN在未来能够取得更多的突破,为人工智能的发展做出更大的贡献。

RAGEN RAGEN is the first open-source reproduction of DeepSeek-R1 for training agentic models via reinforcement learning. RAGEN 项目地址: https://gitcode.com/gh_mirrors/ra/RAGEN

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盛炯典

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值