TensorSpace.js 使用教程

TensorSpace.js 使用教程

tensorspace Neural network 3D visualization framework, build interactive and intuitive model in browsers, support pre-trained deep learning models from TensorFlow, Keras, TensorFlow.js tensorspace 项目地址: https://gitcode.com/gh_mirrors/te/tensorspace

1. 项目介绍

TensorSpace.js 是一个基于 TensorFlow.js、Three.js 和 Tween.js 构建的神经网络 3D 可视化框架。它提供了类似于 Keras 的 API 来构建深度学习层、加载预训练模型,并在浏览器中生成 3D 可视化。通过 TensorSpace,用户可以直观地了解模型结构、模型训练过程以及基于中间信息如何进行结果预测。经过预处理后,TensorSpace 支持可视化来自 TensorFlow、Keras 和 TensorFlow.js 的预训练模型。

2. 项目快速启动

2.1 安装 TensorSpace

基本安装步骤:

  • 步骤 1:下载依赖库 下载 TensorFlow.js (tf.min.js)、Three.js (three.min.js)、Tween.js (tween.min.js) 和 TrackballControls (TrackballControls.js)。

  • 步骤 2:下载 TensorSpace 从 Github 下载 TensorSpace 编译文件 tensorspace.min.js

  • 步骤 3:引入编译文件 在网页中包含所有编译文件:

    <script src="tf.min.js"></script>
    <script src="three.min.js"></script>
    <script src="tween.min.js"></script>
    <script src="TrackballControls.js"></script>
    <script src="tensorspace.min.js"></script>
    

进阶框架安装步骤:

  • 步骤 1:安装 TensorSpace

    • 使用 NPM:
      npm install tensorspace
      
    • 使用 Yarn:
      yarn add tensorspace
      
  • 步骤 2:使用 TensorSpace

    import * as TSP from 'tensorspace';
    

2.2 预处理预训练模型

在使用 TensorSpace 可视化预训练模型之前,需要预处理模型。可以使用 TensorSpace 提供的转换工具(TensorSpace Converter)来完成预处理。

例如,如果手头有一个 tf.keras 模型,可以使用以下脚本将其转换为 TensorSpace 兼容格式:

tensorspacejs_converter \
--input_model_from="tensorflow" \
--input_model_format="tf_keras" \
--output_layer_names="padding_1,conv_1,maxpool_1,conv_2,maxpool_2,dense_1,dense_2,softmax" \
./PATH/TO/MODEL/tf_keras_model.h5 \
./PATH/TO/SAVE/DIR

确保在运行 TensorSpace Converter 之前安装了 tensorspacejs pip 包,并设置了 TensorSpace-Converter 运行环境。

2.3 使用 TensorSpace 可视化模型

如果 TensorSpace 安装成功并且预训练的深度学习模型已经预处理,就可以创建一个交互式的 3D TensorSpace 模型。

以下是一个示例代码,展示了如何使用 TensorSpace 创建一个模型:

let container = document.getElementById('container');
let model = new TSP.models.Sequential(container);

model.add(new TSP.layers.GreyscaleInput());
.add(new TSP.layers.Padding2d());
.add(new TSP.layers.Conv2d());
.add(new TSP.layers.Pooling2d());
.add(new TSP.layers.Conv2d());
.add(new TSP.layers.Pooling2d());
.add(new TSP.layers.Dense());
.add(new TSP.layers.Dense());
.add(new TSP.layers.Output1d({outputs: ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']}));

3. 应用案例和最佳实践

(此部分将介绍具体的应用案例和最佳实践,由于缺乏具体项目信息,这里不展开详细内容。)

4. 典型生态项目

(此部分将介绍与 TensorSpace 相关的生态项目,例如扩展库、示例项目等,由于缺乏具体项目信息,这里不展开详细内容。)


以上就是 TensorSpace.js 的使用教程。希望对您有所帮助。

tensorspace Neural network 3D visualization framework, build interactive and intuitive model in browsers, support pre-trained deep learning models from TensorFlow, Keras, TensorFlow.js tensorspace 项目地址: https://gitcode.com/gh_mirrors/te/tensorspace

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盛炯典

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值