Adversarial Robustness Toolbox (ART) 使用教程
项目地址:https://gitcode.com/gh_mirrors/adv/adversarial-robustness-toolbox
1. 项目的目录结构及介绍
Adversarial Robustness Toolbox (ART) 是一个用于机器学习安全的 Python 库。以下是项目的目录结构及其介绍:
adversarial-robustness-toolbox/
├── art/
│ ├── attacks/
│ ├── defences/
│ ├── estimators/
│ ├── evaluations/
│ ├── metrics/
│ ├── preprocessing/
│ ├── data_generators/
│ ├── exceptions/
│ ├── summary_writer/
│ ├── utils/
│ └── tests/
├── docs/
├── examples/
├── notebooks/
├── setup.py
├── README.md
└── LICENSE
art/
: 包含所有与 ART 相关的模块,如攻击 (attacks
)、防御 (defences
)、估计器 (estimators
) 等。docs/
: 包含项目的文档文件。examples/
: 包含使用 ART 的示例代码。notebooks/
: 包含 Jupyter 笔记本示例。setup.py
: 项目的安装文件。README.md
: 项目的介绍和使用说明。LICENSE
: 项目的许可证文件。
2. 项目的启动文件介绍
ART 项目没有特定的启动文件,因为它是一个库,需要通过导入模块来使用。通常,用户会根据需要导入特定的模块和函数。例如:
from art.attacks.evasion import FastGradientMethod
from art.estimators.classification import TensorFlowV2Classifier
3. 项目的配置文件介绍
ART 项目没有特定的配置文件,因为它主要通过代码进行配置。用户可以根据需要设置不同的参数和选项。例如,在使用攻击模块时,可以设置攻击的参数:
from art.attacks.evasion import FastGradientMethod
from art.estimators.classification import TensorFlowV2Classifier
# 创建分类器
classifier = TensorFlowV2Classifier(...)
# 创建攻击
attack = FastGradientMethod(estimator=classifier, eps=0.3)
通过这种方式,用户可以根据具体需求配置和使用 ART 库。