OpenR项目使用与启动教程

OpenR项目使用与启动教程

openr OpenR: An Open Source Framework for Advanced Reasoning with Large Language Models openr 项目地址: https://gitcode.com/gh_mirrors/ope/openr

1. 项目介绍

OpenR是一个开源框架,旨在利用大型语言模型进行高级推理。该项目支持多种推理策略和在线策略训练,以改善语言模型在数学推理等领域的表现。OpenR框架提供了自动化过程监督数据生成、生成性和判别性PRM训练、多种搜索策略等功能,助力研究者在该领域进行深入研究和开发。

2. 项目快速启动

在开始使用OpenR之前,请确保您的环境中已安装以下依赖:

conda create -n open_reasoner python=3.10
conda activate open_reasoner
pip install -r requirements.txt
pip3 install "fschat[model_worker,webui]"
pip install -U pydantic

接下来,下载所需的基础模型。OpenR使用以下模型:

  • Qwen2.5-Math-1.5B-Instruct
  • Qwen2.5-Math-7B-Instruct
  • peiyi9979/mistral-7b-sft
  • peiyi9979/math-shepherd-mistral-7b-prm

请参考Hugging Face模型下载教程,将这些模型下载到相应的目录。

配置环境变量,设置模型路径等信息:

export MODEL_BASE="/path/to/your/models"
export POLICY_MODEL_NAME="your_policy_model"
export VALUE_MODEL_NAME="your_value_model"
export NUM_LM_WORKER="number_of_lm_workers"
export NUM_RM_WORKER="number_of_rm_workers"

启动LM和RM服务:

sh reason/llm_service/create_service_math_shepherd.sh

运行推理:

export PYTHONPATH=$(pwd)
sh scripts/eval/cot_greedy.sh
sh scripts/eval/cot_rerank.sh
sh scripts/eval/beam_search.sh
sh scripts/eval/vanila_mcts.sh

3. 应用案例和最佳实践

OpenR提供了多种推理方法,以下是一些典型的使用案例:

  • Greedy Search:使用贪婪搜索策略来生成回答。
  • Best-of-N:从N个候选答案中选择最佳答案。
  • Beam Search:使用束搜索来生成回答。
  • MCTS:使用蒙特卡洛树搜索进行推理。

根据具体的应用场景和需求,选择合适的搜索策略。

4. 典型生态项目

OpenR作为开源项目,已经吸引了一些相关的生态系统项目,例如:

  • ModelScope:提供了一个demo页面,用于展示OpenR的推理能力。
  • Math-APS:OpenR使用的数据集之一,用于数学推理的研究。

开源社区持续在OpenR的基础上进行扩展和创新,不断丰富其生态系统。

openr OpenR: An Open Source Framework for Advanced Reasoning with Large Language Models openr 项目地址: https://gitcode.com/gh_mirrors/ope/openr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

褚铃尤Kerwin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值