Serverless Pseudo Parameters 使用指南

Serverless Pseudo Parameters 使用指南

serverless-pseudo-parametersUse CloudFormation Pseudo Parameters in your Serverless project项目地址:https://gitcode.com/gh_mirrors/se/serverless-pseudo-parameters

项目介绍

Serverless Pseudo Parameters 是一个专为 Serverless Framework 设计的插件,由 svdgraaf 开发并维护。它允许用户在 Serverless 配置文件中直接使用 AWS 的伪参数,如 ${AWS::Region}${AWS::AccountId},而无需手动插入这些值。这极大地提高了配置的灵活性和可维护性。随着 Serverless Framework 对原生伪参数支持的增强,请注意检查其最新版本是否已内建类似功能,并参考项目仓库以获取兼容性和废弃状态。

项目快速启动

要快速开始使用 Serverless Pseudo Parameters,首先确保你的环境已经安装了 Node.js 和 Serverless Framework。接下来,遵循以下步骤:

  1. 安装插件(假设你需要特定版本,但请注意,版本号应基于实际可用的版本来确定):

    npm install --save-dev serverless-pseudo-parameters
    

    注意:上述命令中的版本号 3.3.0 在原始引用中可能不正确,需查找实际存在的版本替换之。例如,正确的版本可能是 2.6.1

  2. 配置 Serverless.yml 在你的 serverless.yml 文件中添加插件声明:

    plugins:
      - serverless-pseudo-parameters
    
  3. 使用伪参数 现在,在配置中,你可以自由地使用伪参数,例如指定某个资源的区域:

    service: my-service
    provider:
      name: aws
      region: ${AWS::Region}
    resources:
      Resources:
        MyQueue:
          Type: AWS::SQS::Queue
          Properties:
            QueueName: ${self:service}-${AWS::Region}-queue
    

应用案例和最佳实践

案例一:动态资源命名

通过使用伪参数动态地为资源命名,可以确保部署到不同环境时资源名符合标准且避免冲突。

resources:
  Resources:
    MyTable:
      Type: AWS::DynamoDB::Table
      Properties:
        TableName: ${self:custom.appName}-${AWS::Region}-${opt:stage, 'dev'}-table

最佳实践

  • 版本控制: 确保使用的插件版本与Serverless Framework版本兼容。
  • 变量层次分明: 结合使用服务自定义变量、环境变量和伪参数,保持配置清晰且易于管理。
  • 测试多环境部署: 在不同的AWS环境或阶段验证伪参数的行为,以保证配置的鲁棒性。

典型生态项目

由于Serverless框架的广泛使用,Serverless Pseudo Parameters通常与其他优化Serverless体验的工具一同使用,比如用于自动部署的工作流工具(GitHub Actions, GitLab CI/CD),以及监控和日志解决方案(CloudWatch Logs, Datadog)。结合这些工具,开发者可以创建高效、可扩展的服务,同时利用伪参数轻松适应不同AWS环境的变化。


请根据实际情况调整上述指导,尤其是版本号和具体配置部分,因为技术栈快速演进,所提及的版本和细节可能会过时。始终参照最新官方文档或项目仓库的说明进行操作。

serverless-pseudo-parametersUse CloudFormation Pseudo Parameters in your Serverless project项目地址:https://gitcode.com/gh_mirrors/se/serverless-pseudo-parameters

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

支然苹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值