Erlang中的Prometheus监控实战
prometheus.erl Prometheus.io client in Erlang 项目地址: https://gitcode.com/gh_mirrors/pr/prometheus.erl
1. 项目介绍
Prometheus.io客户端在Erlang世界的实现 是一个用于集成Prometheus监控系统的时间序列数据库客户端库。此库允许Erlang应用程序轻松地收集和报告性能指标,便于通过Prometheus进行实时监控和分析。它支持多种集成方式,比如Cowboy作为HTTP服务器导出指标,以及与其他Erlang框架如Ecto和Phoenix的结合。此外,项目遵循MIT许可协议,并且提供了全面的API来创建不同类型的度量标准,包括计数器、直方图、摘要等。
2. 项目快速启动
要开始使用deadtrickster/prometheus.erl
,首先确保你的开发环境安装了Erlang和Rebar3或Mix(如果你是Elixir项目)。以下是基本步骤:
安装依赖
对于纯Erlang项目,在你的rebar.config
中添加以下依赖:
{deps, [
{prometheus, "~> 4.11.0"}
]}.
然后运行rebar3 fetch
或者 rebar3 deps
.
基本使用示例
在你的Erlang应用中引入并初始化Prometheus:
-module(my_app).
-export([start/0]).
start() ->
ok = application:start(prometheus),
% 注册一个gauge指标
prometheus_gauge:new([[name, pool_size], [help, "MyApp Connection Pool Size"]]),
% 设置一个初始值
prometheus_gauge:set(pool_size, 10).
main(_) ->
start(),
% 假设这是一个循环,更新指标
timer:sleep(5000), % 模拟周期性任务
prometheus_gauge:set(pool_size, 15). % 更新池大小
之后,你可以通过编写特定的导出器来将这些指标以文本或protobuf格式暴露给Prometheus拉取:
io:format(prometheus_text_format:format()),
如果部署在Web服务中,你会配置一个端点来响应Prometheus的查询。
3. 应用案例和最佳实践
实时监控Erlang VM资源
在Erlang应用中,利用prometheus_erl
可以实时监控VM的内存使用、进程数量、调度器负载等。这有助于理解应用的运行状态,优化资源配置。例如,你可能想监控erlang_vm_memory_collector
提供的内存指标。
最佳实践中,应该定期检查指标以发现潜在的性能瓶颈,使用Grafana这样的可视化工具来绘制趋势图,设置报警阈值,防止系统过载。
4. 典型生态项目
Prometheus与Grafana集成 是最常见的应用场景之一。通过prometheus_erl
导出的数据可以接入到Grafana中,创建丰富多样的仪表板来展示Erlang应用的状态。虽然现成的Erlang VM指标面板可能需要一些自定义调整以匹配你的具体命名规范,但社区提供的诸如BEAM Dashboards或是从RabbitMQ衍生出的面板,可以作为一个起点。
此外,考虑到未来的发展趋势,OpenTelemetry也是一个重要的生态部分,尽管目前还在实验阶段。它的目的是统一收集和处理观测数据的接口,对于希望迁移到更广泛可互操作的监控解决方案的项目来说,值得关注和尝试。
以上就是基于deadtrickster/prometheus.erl
项目的一个简明指南,让你能够迅速将Prometheus监控集成至你的Erlang应用之中,并有效利用其强大的生态系统来进行应用性能管理。
prometheus.erl Prometheus.io client in Erlang 项目地址: https://gitcode.com/gh_mirrors/pr/prometheus.erl