PIMoG 项目使用教程
1. 项目的目录结构及介绍
PIMoG-An-Effective-Screen-shooting-Noise-Layer-Simulation-for-Deep-Learning-Based-Watermarking-Netw/
├── Datasets/
│ ├── COCOMask/
│ │ └── train/
│ │ └── train_class/
│ └── PerspectiveTransformation/
├── models/
│ └── ScreenShooting/
├── results/
├── LICENSE
├── Noise_Layer.py
├── README.md
├── data_loader.py
├── main.py
├── model.py
└── solver.py
目录结构介绍
- Datasets/: 存放训练和测试数据集的目录。
- COCOMask/: 包含训练数据的子目录。
- PerspectiveTransformation/: 包含透视变换相关的数据。
- models/: 存放模型文件的目录。
- ScreenShooting/: 包含与屏幕截图噪声层模拟相关的模型文件。
- results/: 存放训练和测试结果的目录。
- LICENSE: 项目的开源许可证文件。
- Noise_Layer.py: 噪声层模拟的实现文件。
- README.md: 项目的说明文件。
- data_loader.py: 数据加载器的实现文件。
- main.py: 项目的启动文件。
- model.py: 模型的实现文件。
- solver.py: 求解器的实现文件。
2. 项目的启动文件介绍
main.py
main.py
是项目的启动文件,负责控制整个项目的训练、测试和嵌入水印等操作。以下是一些常用的命令行参数:
-
训练网络:
python main.py --dataset train_mask --mode train_mask --image_dir 'path/to/images/' --image_val_dir 'path/to/validation_images/'
-
使用预训练模型嵌入水印:
python main.py --dataset test_embedding --mode test_embedding --image_dir 'path/to/images/' --embedding_epoch 99 --distortion ScreenShooting
-
测试网络的准确性:
python main.py --dataset test_accuracy --mode test_accuracy --image_dir 'path/to/images/' --image_val_dir 'path/to/validation_images/' --embedding_epoch 99 --distortion ScreenShooting
3. 项目的配置文件介绍
README.md
README.md
文件包含了项目的详细说明,包括如何训练网络、使用预训练模型嵌入水印以及测试网络的准确性等。建议在使用项目前仔细阅读该文件。
LICENSE
LICENSE
文件描述了项目的开源许可证类型,本项目使用的是 GPL-3.0 许可证。
Noise_Layer.py
Noise_Layer.py
文件实现了屏幕截图噪声层的模拟,是项目的关键组件之一。
data_loader.py
data_loader.py
文件负责加载训练和测试数据,确保数据能够正确地输入到模型中。
model.py
model.py
文件定义了项目的深度学习模型结构,包括水印嵌入和提取的相关操作。
solver.py
solver.py
文件包含了训练和测试过程中使用的求解器,负责优化模型的参数。