ReLA 项目常见问题解决方案
一、项目基础介绍
ReLA 是一个开源项目,其主要工作是关于广义指代表达式分割(Generalized Referring Expression Segmentation)的算法实现。该项目是 CVPR 2023 的一篇论文的代码库,由 Chang Liu, Henghui Ding 和 Xudong Jiang 合作完成。项目使用的主要编程语言是 Python,并且依赖于 PyTorch 和 Detectron2 等深度学习框架。
二、新手常见问题及解决方案
问题一:如何安装和配置项目环境?
问题描述: 新手在使用项目时,可能不知道如何正确安装和配置项目所需的环境。
解决步骤:
- 确保系统中已安装了 CUDA 11.8、PyTorch 1.11.0 和 Detectron2 0.6。
- 克隆项目到本地:
git clone https://github.com/henghuiding/ReLA.git
- 安装 Detectron2:
cd ReLA sh make.sh
- 使用 pip 安装项目所需的其他依赖包:
pip install -r requirements.txt
- 按照项目中的
datasets/DATASET.md
指导准备数据集。
问题二:如何进行模型训练?
问题描述: 初学者可能不清楚如何启动模型的训练过程。
解决步骤:
- 下载预训练的 backbone 权重,并将其转换为 Detectron2 格式:
wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth python tools/convert-pretrained-swin-model-to-d2.py swin_base_patch4_window12_384_22k.pth swin_base_patch4_window12_384_22k.pkl
- 开始训练模型:
其中,python train_net.py --config-file configs/referring_swin_base.yaml --num-gpus 8 --dist-url auto --model-weights [path_to_weights] --output-dir [path_to_weights]
[path_to_weights]
需要替换为下载的权重文件路径。
问题三:如何在模型训练时进行自定义配置?
问题描述: 用户可能想要调整一些训练参数,但不知道如何操作。
解决步骤:
- 在训练命令中添加自定义配置选项。例如,修改批量大小和学习率:
python train_net.py --config-file configs/referring_swin_base.yaml --num-gpus 8 --dist-url auto --model-weights [path_to_weights] --output-dir [path_to_weights] SOLVER.IMS_PER_BATCH 48 SOLVER.BASE_LR 0.00001
- 查阅项目中的
configs/referring_R50.yaml
和configs/Base-COCO-InstanceSegmentation.yaml
文件,以获取更多可配置的参数。