ReLA 项目常见问题解决方案

ReLA 项目常见问题解决方案

ReLA [CVPR2023 Highlight] GRES: Generalized Referring Expression Segmentation ReLA 项目地址: https://gitcode.com/gh_mirrors/re/ReLA

一、项目基础介绍

ReLA 是一个开源项目,其主要工作是关于广义指代表达式分割(Generalized Referring Expression Segmentation)的算法实现。该项目是 CVPR 2023 的一篇论文的代码库,由 Chang Liu, Henghui Ding 和 Xudong Jiang 合作完成。项目使用的主要编程语言是 Python,并且依赖于 PyTorch 和 Detectron2 等深度学习框架。

二、新手常见问题及解决方案

问题一:如何安装和配置项目环境?

问题描述: 新手在使用项目时,可能不知道如何正确安装和配置项目所需的环境。

解决步骤:

  1. 确保系统中已安装了 CUDA 11.8、PyTorch 1.11.0 和 Detectron2 0.6。
  2. 克隆项目到本地:
    git clone https://github.com/henghuiding/ReLA.git
    
  3. 安装 Detectron2:
    cd ReLA
    sh make.sh
    
  4. 使用 pip 安装项目所需的其他依赖包:
    pip install -r requirements.txt
    
  5. 按照项目中的 datasets/DATASET.md 指导准备数据集。

问题二:如何进行模型训练?

问题描述: 初学者可能不清楚如何启动模型的训练过程。

解决步骤:

  1. 下载预训练的 backbone 权重,并将其转换为 Detectron2 格式:
    wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth
    python tools/convert-pretrained-swin-model-to-d2.py swin_base_patch4_window12_384_22k.pth swin_base_patch4_window12_384_22k.pkl
    
  2. 开始训练模型:
    python train_net.py --config-file configs/referring_swin_base.yaml --num-gpus 8 --dist-url auto --model-weights [path_to_weights] --output-dir [path_to_weights]
    
    其中,[path_to_weights] 需要替换为下载的权重文件路径。

问题三:如何在模型训练时进行自定义配置?

问题描述: 用户可能想要调整一些训练参数,但不知道如何操作。

解决步骤:

  1. 在训练命令中添加自定义配置选项。例如,修改批量大小和学习率:
    python train_net.py --config-file configs/referring_swin_base.yaml --num-gpus 8 --dist-url auto --model-weights [path_to_weights] --output-dir [path_to_weights] SOLVER.IMS_PER_BATCH 48 SOLVER.BASE_LR 0.00001
    
  2. 查阅项目中的 configs/referring_R50.yamlconfigs/Base-COCO-InstanceSegmentation.yaml 文件,以获取更多可配置的参数。

ReLA [CVPR2023 Highlight] GRES: Generalized Referring Expression Segmentation ReLA 项目地址: https://gitcode.com/gh_mirrors/re/ReLA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

史琼鸽Power

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值