Kapre: Keras音频预处理器
kapre kapre: Keras Audio Preprocessors 项目地址: https://gitcode.com/gh_mirrors/ka/kapre
项目基础介绍和主要编程语言
Kapre是一个基于Keras的音频预处理库,主要用于深度学习模型的音频数据预处理。该项目使用Python作为主要的编程语言,并且依赖于TensorFlow和Keras框架。Kapre的设计目标是简化音频数据的预处理流程,使得开发者可以更专注于模型的构建和训练。
项目核心功能
Kapre的核心功能包括:
- 短时傅里叶变换(STFT):提供高效的STFT计算,支持GPU加速,适用于实时处理。
- 梅尔频谱图(Melspectrogram):生成梅尔频谱图,广泛用于音频特征提取。
- 幅度谱图和分贝转换:支持从幅度谱图到分贝谱图的转换,便于音频特征的分析。
- 数据格式无关性:支持
channels_first
和channels_last
两种数据格式,适应不同的模型输入需求。 - 可复现性:通过版本控制和详细的文档,确保实验结果的可复现性。
项目最近更新的功能
Kapre最近更新的功能包括:
- TFLite兼容性:增加了TFLite兼容的STFT和幅度谱图层,使得模型可以在TFLite环境中部署。
- 扩展API:提供了更多扩展API,如可逆的STFT和InverseSTFT对,以及更多选项的梅尔频谱图生成。
- 性能优化:对部分核心功能进行了性能优化,提升了处理速度和效率。
- 文档更新:更新了API文档,增加了更多使用示例和教程,方便新用户快速上手。
通过这些更新,Kapre进一步提升了其在音频预处理领域的实用性和易用性,为开发者提供了更强大的工具支持。
kapre kapre: Keras Audio Preprocessors 项目地址: https://gitcode.com/gh_mirrors/ka/kapre