开源项目推荐:Glance and Focus Matting (GFM)

开源项目推荐:Glance and Focus Matting (GFM)

GFM [IJCV 2022] Bridging Composite and Real: Towards End-to-end Deep Image Matting GFM 项目地址: https://gitcode.com/gh_mirrors/gf/GFM

1. 项目基础介绍及主要编程语言

Glance and Focus Matting (GFM) 是一个开源项目,旨在实现端到端的图像抠图技术。该项目由悉尼大学和伦敦大学伯克贝克学院的研究人员共同开发。GFM 利用共享编码器以及两个独立的解码器,协同学习图像抠图任务。项目采用 Python 作为主要编程语言,并依赖于多种深度学习库。

2. 项目的核心功能

  • 端到端图像抠图:GFM 提出了一种新的网络架构,能够实现从合成图像到自然图像的端到端抠图。
  • 共享编码器与独立解码器:网络采用共享编码器以及两个独立解码器,分别处理不同的抠图任务,提高学习效率和抠图质量。
  • RoSTa 表示:在方法中采用三种 RoSTa(Representation of Semantic and Transition Area)表示,以更好地处理图像中的语义和过渡区域。

3. 项目最近更新的功能

  • 数据集发布:GFM 发布了两个新的数据集——AM-2k 和 BG-20k。AM-2k 包含 2000 张高分辨率自然动物图像及其手动标记的 alpha 矩阵。BG-20k 包含 20000 张高分辨率背景图像,用于生成高质量的合成数据。
  • 隐私保护:项目组针对隐私问题进行了处理,PM-10k 数据集将在隐私保护处理后发布。
  • Google Colab Demo:为了方便用户在线尝试,项目组创建了一个 Google Colab demo,用户可以通过该 demo 生成自己的图像抠图结果。
  • 预训练模型:项目组发布了多种预训练模型,用户可以下载并用于测试自己的样本图像。

GFM [IJCV 2022] Bridging Composite and Real: Towards End-to-end Deep Image Matting GFM 项目地址: https://gitcode.com/gh_mirrors/gf/GFM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

廉贵治

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值