Mango 项目使用教程
mango Parallel Hyperparameter Tuning in Python 项目地址: https://gitcode.com/gh_mirrors/mango38/mango
1. 目录结构及介绍
Mango 是一个用于机器学习分类器超参数优化的 Python 库。以下是项目的目录结构及其简要介绍:
mango/
├── .github/ # GitHub 工作流和配置文件
│ ├── workflows/
│ │ ├── update actions.yml
│ │ ├── benchmarking.yml
│ │ └── ...
├── documents/ # 项目文档
├── examples/ # 示例代码
├── mango/ # Mango 库源代码
├── tests/ # 测试代码
├── .gitignore # Git 忽略文件
├── LICENSE # 项目许可证
├── License.txt # 项目许可证副本
├── README.md # 项目介绍
├── dev_notes.md # 开发者笔记
├── development.md # 开发文档
├── poetry.lock # 依赖管理文件
└── pyproject.toml # 项目配置文件
2. 项目的启动文件介绍
Mango 项目的启动通常是通过 Python 的包管理工具 pip
来安装。以下是安装和启动项目的步骤:
首先,从源代码安装 Mango:
$ git clone https://github.com/ARM-software/mango.git
$ cd mango
$ pip3 install .
安装完成后,可以通过以下示例代码启动一个简单的优化任务:
from mango import scheduler, Tuner
# 定义搜索空间
param_space = dict(x=range(-10, 11))
# 定义目标函数
@ scheduler.serial
def objective(x):
return x * x
# 初始化并运行 Tuner
tuner = Tuner(param_space, objective)
results = tuner.minimize()
print(f'Optimal value of parameters: {results["best_params"]} and objective: {results["best_objective"]}')
上述代码将寻找使二次函数 x * x
最小的 x
值。
3. 项目的配置文件介绍
Mango 项目的配置主要通过 pyproject.toml
文件来管理。该文件包含项目的基本信息和依赖关系。以下是 pyproject.toml
文件的一个示例:
[tool.poetry]
name = "mango"
version = "0.1.0"
description = "A parallel hyperparameter tuning library"
authors = ["ARM-software"]
[tool.poetry.dependencies]
python = "^3.8"
[tool.poetry.dev-dependencies]
pytest = "^6.2"
此外,项目的运行和开发环境配置可以通过 .github/workflows
目录下的工作流文件来定义,这些文件用于自动化项目的测试、构建等流程。
以上是 Mango 项目的基本使用和配置介绍,开发者可以根据具体需求进行更深入的探索和定制化开发。
mango Parallel Hyperparameter Tuning in Python 项目地址: https://gitcode.com/gh_mirrors/mango38/mango