GrowingBugRepository 使用教程

GrowingBugRepository 使用教程

GrowingBugRepository A bug repository that keeps growing GrowingBugRepository 项目地址: https://gitcode.com/gh_mirrors/gr/GrowingBugRepository

1. 项目介绍

GrowingBugRepository 是一个持续增长的开源缺陷库,包含了来自真实世界开源 Java 项目的缺陷案例。每个缺陷案例由一个有缺陷的版本、一个修复版本、一个简洁的修复补丁以及一个或多个触发测试用例组成。该项目旨在为软件缺陷修复研究和竞赛提供数据支持。

2. 项目快速启动

要快速启动 GrowingBugRepository,请按照以下步骤操作:

首先,确保您已经安装了 Docker。接着,运行以下命令来下载并启动 GrowingBugRepository 的 Docker 容器:

docker import https://zenodo.org/records/14286643
docker run -it --name growingbugs -p 8080:8080 growingbugs

上述命令将下载 GrowingBugRepository 的 Docker 镜像,并启动一个容器,将容器的 8080 端口映射到宿主机的 8080 端口上。

启动后,您可以通过访问 http://localhost:8080 来查看项目。

3. 应用案例和最佳实践

以下是使用 GrowingBugRepository 的一些典型应用案例和最佳实践:

  • 缺陷修复研究:研究人员可以使用 GrowingBugRepository 中的缺陷案例来分析缺陷修复模式,进而提出新的修复技术或改进现有技术。
  • 编程竞赛:GrowingBugRepository 被选为官方数据集,用于 ChinaSoft 2024 软件缺陷修复竞赛。参赛者可以利用这些数据来训练和测试他们的修复算法。
  • 教学材料:教师可以将 GrowingBugRepository 作为教学材料,用于指导学生如何进行缺陷修复和测试。

4. 典型生态项目

GrowingBugRepository 是一个数据集项目,它与其他项目有着广泛的生态关系。以下是一些与之相关的典型生态项目:

  • 缺陷修复工具:如 GZoltar、Defects4J 等,这些工具可以使用 GrowingBugRepository 中的数据来评估和改进它们的修复能力。
  • 持续集成/持续部署 (CI/CD) 系统:GrowingBugRepository 可以集成到 CI/CD 流程中,用于自动化测试和修复过程。
  • 代码质量分析工具:如 SonarQube,可以使用 GrowingBugRepository 来评估代码质量和缺陷趋势。

以上就是 GrowingBugRepository 的使用教程。希望这个教程能够帮助您更好地理解和利用这个强大的开源缺陷库。

GrowingBugRepository A bug repository that keeps growing GrowingBugRepository 项目地址: https://gitcode.com/gh_mirrors/gr/GrowingBugRepository

数据集介绍:高空视角飞机跑道船只目标检测数据集 一、基础信息 数据集名称:高空视角飞机跑道船只目标检测数据集 图片数量: - 训练集:3,375张图片 - 验证集:331张图片 - 测试集:164张图片 分类类别: - airplane:涵盖多种机型的高空目标检测样本 - runway:包含机场跑道及地面辅助设施的关键区域标注 - ship:覆盖不同尺寸和航向的船只检测样本 标注格式: YOLO格式,包含目标检测所需的归一化坐标及类别标签 数据特性: - 无人机及高空平台采集视角 - 覆盖陆地、海洋、机场等多场景 - 包含目标小尺寸、密集排列等真实检测挑战 二、适用场景 航空交通管理系统开发: 支持构建自动识别空中飞行器与地面跑道的AI模型,提升空域管理效率 无人机自主导航系统: 为无人机提供机场跑道识别与障碍物避让的基准训练数据 港口船舶监控解决方案: 训练船舶检测模型,支持海上交通流量统计与异常行为识别 遥感图像分析工具: 适用于卫星/航拍影像中的基础设施识别与地理信息系统开发 三、数据集优势 多目标协同检测能力: 同时包含空中目标(飞机)、地面设施(跑道)、海上目标(船舶)的关联场景数据 高适应性标注: 兼容YOLOv5/YOLOv8等主流目标检测框架,支持快速模型迭代 视角多样性: 涵盖不同高度、角度、光照条件下的无人机及高空拍摄视角 专业数据分割: 严格划分训练集/验证集/测试集,符合工业级模型开发标准
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴驰欣Fitzgerald

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值