开源项目 prediction-builder
使用教程
1. 项目的目录结构及介绍
prediction-builder/
├── README.md
├── src/
│ ├── main.py
│ ├── config.py
│ ├── models/
│ │ ├── __init__.py
│ │ ├── model1.py
│ │ └── model2.py
│ └── utils/
│ ├── __init__.py
│ ├── helper.py
│ └── logger.py
└── tests/
├── __init__.py
├── test_model1.py
└── test_model2.py
目录结构介绍
README.md
: 项目说明文档。src/
: 源代码目录。main.py
: 项目启动文件。config.py
: 项目配置文件。models/
: 模型相关代码。model1.py
: 模型1的实现。model2.py
: 模型2的实现。
utils/
: 工具类代码。helper.py
: 辅助函数。logger.py
: 日志记录工具。
tests/
: 测试代码目录。test_model1.py
: 模型1的测试代码。test_model2.py
: 模型2的测试代码。
2. 项目的启动文件介绍
main.py
# main.py
from config import Config
from models.model1 import Model1
from models.model2 import Model2
from utils.logger import setup_logger
def main():
config = Config()
logger = setup_logger(config.log_level)
model1 = Model1(config)
model2 = Model2(config)
# 启动逻辑
logger.info("项目启动成功")
if __name__ == "__main__":
main()
启动文件介绍
main.py
是项目的入口文件,负责初始化配置、日志、模型等,并启动项目。- 通过
Config
类加载配置。 - 使用
setup_logger
函数设置日志级别。 - 初始化
Model1
和Model2
模型。 - 执行启动逻辑并记录日志。
3. 项目的配置文件介绍
config.py
# config.py
import os
class Config:
def __init__(self):
self.log_level = os.getenv("LOG_LEVEL", "INFO")
self.model1_param = os.getenv("MODEL1_PARAM", "default_value")
self.model2_param = os.getenv("MODEL2_PARAM", "default_value")
配置文件介绍
config.py
文件定义了Config
类,用于加载和管理项目的配置。- 通过环境变量加载配置参数,提供默认值。
- 配置参数包括日志级别 (
log_level
) 和模型参数 (model1_param
,model2_param
)。
以上是 prediction-builder
项目的目录结构、启动文件和配置文件的详细介绍。希望这份教程能帮助你更好地理解和使用该项目。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考