Walk in the Park 项目使用教程

Walk in the Park 项目使用教程

walk_in_the_park walk_in_the_park 项目地址: https://gitcode.com/gh_mirrors/wa/walk_in_the_park

1. 项目介绍

Walk in the Park 是一个用于训练模拟或真实 A1 四足机器人行走的开源项目。该项目基于模型自由强化学习(Model-Free Reinforcement Learning),旨在通过简单的代码实现快速训练机器人行走。项目的主要目标是提供一个易于理解和使用的框架,帮助研究人员和开发者快速上手并进行相关实验。

项目的主要特点包括:

  • 支持模拟和真实机器人训练。
  • 提供详细的配置文件和训练脚本。
  • 基于 Python 和常用的机器学习库(如 TensorFlow 或 PyTorch)。

2. 项目快速启动

2.1 安装依赖

首先,克隆项目到本地:

git clone https://github.com/ikostrikov/walk_in_the_park.git
cd walk_in_the_park

安装项目所需的依赖:

pip install -r requirements.txt

2.2 安装机器人 SDK

如果需要在真实机器人上进行训练,需要安装机器人 SDK。首先安装依赖:

cd real/third_party/unitree_legged_sdk
mkdir build
cd build
cmake ..
make

然后将生成的 robot_interface_XXX.so 文件复制到项目目录中。

2.3 运行模拟训练

使用以下命令启动模拟训练:

MUJOCO_GL=egl XLA_PYTHON_CLIENT_PREALLOCATE=false python train_online.py --env_name=A1Run-v0 \
--utd_ratio=20 \
--start_training=1000 \
--max_steps=100000 \
--config=configs/droq_config.py

2.4 在真实机器人上训练

如果需要在真实机器人上进行训练,只需在上述命令中添加 --real_robot=True 参数:

MUJOCO_GL=egl XLA_PYTHON_CLIENT_PREALLOCATE=false python train_online.py --env_name=A1Run-v0 \
--utd_ratio=20 \
--start_training=1000 \
--max_steps=100000 \
--config=configs/droq_config.py \
--real_robot=True

3. 应用案例和最佳实践

3.1 应用案例

Walk in the Park 项目可以应用于多种场景,包括但不限于:

  • 机器人研究:用于开发和测试新的强化学习算法。
  • 教育:作为教学工具,帮助学生理解强化学习和机器人控制。
  • 工业应用:用于开发和测试工业机器人的行走和控制算法。

3.2 最佳实践

  • 参数调优:在训练过程中,根据具体需求调整 --utd_ratio--start_training--max_steps 等参数,以获得最佳的训练效果。
  • 数据可视化:使用 TensorBoard 等工具实时监控训练过程,分析训练数据,优化模型性能。
  • 多环境训练:尝试在不同的模拟环境中进行训练,以提高模型的泛化能力。

4. 典型生态项目

  • OpenAI Gym:一个常用的强化学习环境库,Walk in the Park 项目中的模拟环境基于 OpenAI Gym。
  • TensorFlowPyTorch:常用的深度学习框架,用于实现强化学习算法。
  • MuJoCo:一个物理引擎,用于模拟机器人运动。

通过结合这些生态项目,可以进一步扩展 Walk in the Park 的功能和应用场景。

walk_in_the_park walk_in_the_park 项目地址: https://gitcode.com/gh_mirrors/wa/walk_in_the_park

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬为元Harmony

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值