Walk in the Park 项目使用教程
walk_in_the_park 项目地址: https://gitcode.com/gh_mirrors/wa/walk_in_the_park
1. 项目介绍
Walk in the Park 是一个用于训练模拟或真实 A1 四足机器人行走的开源项目。该项目基于模型自由强化学习(Model-Free Reinforcement Learning),旨在通过简单的代码实现快速训练机器人行走。项目的主要目标是提供一个易于理解和使用的框架,帮助研究人员和开发者快速上手并进行相关实验。
项目的主要特点包括:
- 支持模拟和真实机器人训练。
- 提供详细的配置文件和训练脚本。
- 基于 Python 和常用的机器学习库(如 TensorFlow 或 PyTorch)。
2. 项目快速启动
2.1 安装依赖
首先,克隆项目到本地:
git clone https://github.com/ikostrikov/walk_in_the_park.git
cd walk_in_the_park
安装项目所需的依赖:
pip install -r requirements.txt
2.2 安装机器人 SDK
如果需要在真实机器人上进行训练,需要安装机器人 SDK。首先安装依赖:
cd real/third_party/unitree_legged_sdk
mkdir build
cd build
cmake ..
make
然后将生成的 robot_interface_XXX.so
文件复制到项目目录中。
2.3 运行模拟训练
使用以下命令启动模拟训练:
MUJOCO_GL=egl XLA_PYTHON_CLIENT_PREALLOCATE=false python train_online.py --env_name=A1Run-v0 \
--utd_ratio=20 \
--start_training=1000 \
--max_steps=100000 \
--config=configs/droq_config.py
2.4 在真实机器人上训练
如果需要在真实机器人上进行训练,只需在上述命令中添加 --real_robot=True
参数:
MUJOCO_GL=egl XLA_PYTHON_CLIENT_PREALLOCATE=false python train_online.py --env_name=A1Run-v0 \
--utd_ratio=20 \
--start_training=1000 \
--max_steps=100000 \
--config=configs/droq_config.py \
--real_robot=True
3. 应用案例和最佳实践
3.1 应用案例
Walk in the Park 项目可以应用于多种场景,包括但不限于:
- 机器人研究:用于开发和测试新的强化学习算法。
- 教育:作为教学工具,帮助学生理解强化学习和机器人控制。
- 工业应用:用于开发和测试工业机器人的行走和控制算法。
3.2 最佳实践
- 参数调优:在训练过程中,根据具体需求调整
--utd_ratio
、--start_training
和--max_steps
等参数,以获得最佳的训练效果。 - 数据可视化:使用 TensorBoard 等工具实时监控训练过程,分析训练数据,优化模型性能。
- 多环境训练:尝试在不同的模拟环境中进行训练,以提高模型的泛化能力。
4. 典型生态项目
- OpenAI Gym:一个常用的强化学习环境库,Walk in the Park 项目中的模拟环境基于 OpenAI Gym。
- TensorFlow 和 PyTorch:常用的深度学习框架,用于实现强化学习算法。
- MuJoCo:一个物理引擎,用于模拟机器人运动。
通过结合这些生态项目,可以进一步扩展 Walk in the Park 的功能和应用场景。
walk_in_the_park 项目地址: https://gitcode.com/gh_mirrors/wa/walk_in_the_park