Maxima-Jupyter 开源项目教程
1. 项目介绍
Maxima-Jupyter 是一个开源项目,它为计算机代数系统 Maxima 提供了一个基于 Jupyter 的交互式环境。该项目基于 CL-Jupyter,一个由 Frederic Peschanski 开发的 Jupyter 内核,用于 Common Lisp。Maxima-Jupyter 依赖于 Common-Lisp-Jupyter,由 Tarn Burton 开发。它允许用户在 JupyterLab 中直接使用 Maxima,享受更丰富的交互式计算体验。
2. 项目快速启动
以下是在本地机器上快速启动 Maxima-Jupyter 的步骤:
安装要求
- Maxima 可执行文件,构建时需要支持原生线程的 Common Lisp 实现(如 SBCL 或 Clozure CL)。
- Python 3.2 或更高版本。
- JupyterLab。
安装步骤
-
安装 Maxima 和 JupyterLab
对于 Windows 用户,可以从 Maxima 的官方网站下载安装程序,并安装 JupyterLab。
对于 Unix-like 系统,使用 pip 安装 JupyterLab:
python3 -m pip --user install jupyterlab jupyter-console
-
安装 Maxima-Jupyter
下载 Maxima-Jupyter 的源代码,解压到合适的文件夹中。
-
启动 Maxima 并加载 Maxima-Jupyter
在 Maxima 中执行以下命令以加载 Maxima-Jupyter:
load ("load-maxima-jupyter.lisp"); jupyter_install_image ();
-
启动 JupyterLab
在命令行中执行以下命令以启动 JupyterLab:
jupyter lab
JupyterLab 将在默认的 Web 浏览器中打开,显示已安装的内核,其中包括 Maxima。
3. 应用案例和最佳实践
以下是一些应用案例和最佳实践:
通用使用
- 查看示例笔记本 "MaximaJupyterExample.ipynb" 来了解如何在 JupyterLab 中使用 Maxima。
报告和演讲
- 查看示例笔记本 "MaximaJupyterTalk.ipynb" 来了解如何使用 Maxima-Jupyter 准备报告或演讲。
绘图
- 查看示例笔记本 "Plots.ipynb" 来了解如何在 JupyterLab 中使用 Maxima 的绘图功能。
4. 典型生态项目
Maxima-Jupyter 是 Maxima 生态系统中的一个项目。以下是一些与之相关的典型生态项目:
- Maxima: 一个强大的计算机代数系统,支持符号和数值计算。
- JupyterLab: 一个基于 Web 的交互式计算环境,支持多种编程语言。
- Common-Lisp-Jupyter: 一个 Jupyter 内核,用于 Common Lisp。
通过结合这些项目,用户可以构建强大的计算和数据分析环境。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考