Ant Ray 开源项目教程

Ant Ray 开源项目教程

ant-rayA high-performance distributed execution engine项目地址:https://gitcode.com/gh_mirrors/an/ant-ray

项目介绍

Ant Ray 是一个高性能的分布式执行引擎,由 Ant Group 开发并开源。该项目旨在提供一个简单易用的分布式计算框架,支持大规模的并行处理和分布式任务调度。Ant Ray 基于 Ray 框架构建,提供了丰富的功能和优化,适用于多种复杂的计算场景。

项目快速启动

环境准备

在开始之前,请确保您的开发环境已经安装了 Python 3.7 或更高版本,并且已经安装了 Git。

安装 Ant Ray

  1. 克隆项目仓库:

    git clone https://github.com/alipay/ant-ray.git
    
  2. 进入项目目录:

    cd ant-ray
    
  3. 安装依赖:

    pip install -r requirements.txt
    

运行示例代码

以下是一个简单的示例代码,展示了如何使用 Ant Ray 进行分布式计算:

import ray

# 初始化 Ray
ray.init()

# 定义一个远程函数
@ray.remote
def square(x):
    return x * x

# 并行执行多个任务
results = ray.get([square.remote(i) for i in range(10)])

print(results)

运行上述代码,您将看到输出结果为 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81],这表明多个任务已经成功并行执行。

应用案例和最佳实践

应用案例

Ant Ray 在 Ant Group 内部已经应用于多个场景,包括在线分布式计算、多模态联合推理和分布式计算等。以下是一个典型的应用案例:

在线分布式计算

Ant Ray 提供了一个 Serverless 平台,允许用户将 Java/Python 代码发布为在线服务。通过 Ant Ray Serving,用户可以专注于业务逻辑,利用 Ray 的分布式能力快速构建和部署分布式应用。

最佳实践

  1. 资源管理:合理配置节点和核心数,以确保资源的高效利用。
  2. 任务调度:利用 Ray 的灵活调度能力,优化任务的并行执行和资源分配。
  3. 监控和日志:集成监控和日志系统,实时跟踪应用性能和状态。

典型生态项目

Ant Ray 作为一个分布式计算框架,与其他生态项目紧密集成,提供了丰富的功能和扩展能力。以下是一些典型的生态项目:

  1. Ray Serve:一个用于构建和部署机器学习模型的服务框架。
  2. Ray Tune:一个用于超参数优化的库,支持分布式和并行优化。
  3. Ray SGD:一个用于分布式深度学习的库,提供了高效的训练和推理能力。

通过这些生态项目的集成,Ant Ray 可以满足更多复杂和高性能的计算需求。


以上是 Ant Ray 开源项目的教程,涵盖了项目介绍、快速启动、应用案例和最佳实践以及典型生态项目。希望这些内容能帮助您更好地理解和使用 Ant Ray。

ant-rayA high-performance distributed execution engine项目地址:https://gitcode.com/gh_mirrors/an/ant-ray

内容概要:本文《2025年全球AI Coding市场洞察研究报告》由亿欧智库发布,深入分析了AI编程工具的市场现状和发展趋势。报告指出,AI编程工具在2024年进入爆发式增长阶段,成为软件开发领域的重要趋势。AI编程工具不仅简化了代码生成、调试到项目构建等环节,还推动编程方式从人工编码向“人机协同”模式转变。报告详细评估了主流AI编程工具的表现,探讨了其商业模式、市场潜力及未来发展方向。特别提到AI Agent技术的发展,使得AI编程工具从辅助型向自主型跃迁,提升了任务执行的智能化和全面性。报告还分析了AI编程工具在不同行业和用户群体中的应用,强调了其在提高开发效率、减少重复工作和错误修复方面的显著效果。最后,报告预测2025年AI编程工具将在精准化和垂直化上进一步深化,推动软件开发行业进入“人机共融”的新阶段。 适合人群:具备一定编程基础,尤其是对AI编程工具有兴趣的研发人员、企业开发团队及非技术人员。 使用场景及目标:①了解AI编程工具的市场现状和发展趋势;②评估主流AI编程工具的性能和应用场景;③探索AI编程工具在不同行业中的具体应用,如互联网、金融、游戏等;④掌握AI编程工具的商业模式和盈利空间,为企业决策提供参考。 其他说明:报告基于亿欧智库的专业研究和市场调研,提供了详尽的数据支持和前瞻性洞察。报告不仅适用于技术从业者,也适合企业管理者和政策制定者,帮助他们在技术和商业决策中更好地理解AI编程工具的价值和潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

屈游会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值