DipG-Seg 开源项目教程

DipG-Seg 开源项目教程

DipG-Seg项目地址:https://gitcode.com/gh_mirrors/di/DipG-Seg

项目介绍

DipG-Seg 是一个基于双图像的快速且准确的像素级地面分割算法。该方法通过使用 zz-image 和 dd-image 进行像素级别的分割,可以被视为3D点云上的点级别分割的对应方法。尽管如此,我们的方法在保持高效的同时也非常准确。

主要特点

  • 完全基于图像的地面分割框架:这使得进一步通过调整图像分辨率来加速变得非常容易。
  • 高精度:在 SemanticKITTI 数据集上达到了超过 94% 的准确率。
  • 鲁棒性:适用于 64、32 和 16 线 LiDAR,并且在 nuScenes 和 SemanticKITTI 场景中表现良好。

项目快速启动

安装依赖

首先,确保安装了必要的开发库:

sudo apt install libpcl-dev

然后,安装 Python 依赖包:

pip2 install numpy pandas

构建项目

克隆项目仓库并构建:

mkdir -p ~/catkin_ws/src/
cd ~/catkin_ws/src/
git clone https://github.com/EEPT-LAB/DipG-Seg.git
cd ~/catkin_ws/
catkin_make
# 记得在运行节点之前 source devel/setup.bash

或者使用 catkin tools 构建:

mkdir -p ~/catkin_ws/src/
cd ~/catkin_ws/
catkin init
cd ~/catkin_ws/src/
git clone https://github.com/EEPT-LAB/DipG-Seg.git
cd ~/catkin_ws/
catkin build dipgseg
# 记得在运行节点之前 source devel/setup.bash

应用案例和最佳实践

数据集准备

如果你想在 SemanticKITTI 数据集上验证 DipG-Seg,请下载并放置在你的数据集路径下:

# 假设你的数据集路径为 ~/your_dataset_path/

运行示例

在准备好数据集后,你可以运行以下命令来启动 DipG-Seg:

# 确保你已经 source 了 devel/setup.bash
roslaunch dipgseg dipgseg.launch

典型生态项目

DipG-Seg 作为一个高效的地面分割算法,可以与其他自动驾驶和机器人技术项目集成,例如:

  • 自动驾驶系统:用于实时地面分割和障碍物检测。
  • 机器人导航:用于构建环境地图和路径规划。
  • 3D 重建:作为点云预处理步骤,提高重建精度。

通过这些集成,DipG-Seg 可以显著提升相关系统的性能和鲁棒性。

DipG-Seg项目地址:https://gitcode.com/gh_mirrors/di/DipG-Seg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

屈游会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值