gender-recognition-by-voice:声音识别性别,AI技术新应用

gender-recognition-by-voice:声音识别性别,AI技术新应用

gender-recognition-by-voice Building a Deep learning model that predicts the gender of a speaker using TensorFlow 2 gender-recognition-by-voice 项目地址: https://gitcode.com/gh_mirrors/ge/gender-recognition-by-voice

项目介绍

gender-recognition-by-voice 是一个基于 TensorFlow 2 构建的开源深度学习模型,主要用于识别给定说话者的音频性别。通过分析音频样本的梅尔频谱图(Mel Spectrogram)特征,该项目能够准确地区分男性和女性的声音,为语音识别领域带来了新的技术突破。

项目技术分析

gender-recognition-by-voice 项目采用了以下技术栈:

  • TensorFlow 2.x.x:作为构建深度学习模型的核心框架,TensorFlow 提供了强大的计算能力和灵活的模型构建方式。
  • Scikit-learn:用于模型的评估和预测。
  • Numpy、Pandas:用于数据处理和特征提取。
  • PyAudio:用于音频文件的读取和处理。
  • Librosa:用于音频信号处理,特别是梅尔频谱图的提取。

项目所使用的数据集是 Mozilla 的 Common Voice 大数据集,经过预处理后,数据集去除了无效样本,并且确保了男性和女性样本数量的平衡。使用梅尔频谱图特征提取技术,将音频样本转化为固定长度的向量,以供模型训练和使用。

项目及技术应用场景

gender-recognition-by-voice 项目在实际应用中具有广泛的使用场景,例如:

  • 语音助手个性化:语音助手可以根据用户的性别提供更加个性化的服务。
  • 安全验证:在安全领域,声音识别性别可以作为一项辅助验证措施。
  • 智能客服:通过性别识别,智能客服系统能够提供更加贴心的服务体验。
  • 语音数据分析:在市场调研和数据挖掘中,性别识别有助于更精确地分析用户数据。

项目特点

gender-recognition-by-voice 项目具有以下显著特点:

  1. 模型自定义:用户可以在 utils.py 文件中的 create_model() 函数中自定义模型结构,以满足不同的业务需求。
  2. 易于测试:通过 test.py 脚本,用户可以方便地测试音频文件或自己的声音,并获取性别识别结果。
  3. 高效数据处理:项目使用了梅尔频谱图技术进行特征提取,不仅保证了模型性能,还提高了数据处理的效率。
  4. 平衡数据集:通过平衡男性和女性的样本数量,项目确保了模型的公平性和准确性。

以下是一个简单的测试示例:

python test.py --file "test-samples/27-124992-0002.wav"

输出结果将显示识别的性别及其概率。

为了测试自己的声音,用户只需运行以下命令:

python test.py

并在提示“Please speak”后开始说话。录音将在用户停止说话时结束。

gender-recognition-by-voice 项目的出现,为语音识别领域的技术进步提供了新的视角,同时也为开发者提供了一个强大的工具,以探索声音识别的无限可能。

gender-recognition-by-voice Building a Deep learning model that predicts the gender of a speaker using TensorFlow 2 gender-recognition-by-voice 项目地址: https://gitcode.com/gh_mirrors/ge/gender-recognition-by-voice

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋然仪Stranger

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值