推荐项目:FBTT-Embedding——高效稀疏嵌入表压缩方案

推荐项目:FBTT-Embedding——高效稀疏嵌入表压缩方案

FBTT-EmbeddingThis is a Tensor Train based compression library to compress sparse embedding tables used in large-scale machine learning models such as recommendation and natural language processing. We showed this library can reduce the total model size by up to 100x in Facebook’s open sourced DLRM model while achieving same model quality. Our implementation is faster than the state-of-the-art implementations. Existing the state-of-the-art library also decompresses the whole embedding tables on the fly therefore they do not provide memory reduction during runtime of the training. Our library decompresses only the requested rows therefore can provide 10,000 times memory footprint reduction per embedding table. The library also includes a software cache to store a portion of the entries in the table in decompressed format for faster lookup and process.项目地址:https://gitcode.com/gh_mirrors/fb/FBTT-Embedding

在机器学习领域,特别是推荐系统和自然语言处理中,大量应用着密集的特征表示。然而,随着模型规模的扩大,嵌入表的体积也随之膨胀,给内存和计算带来了极大挑战。FBTT-Embedding 库应运而生,它通过高效的张量列火车(Tensor Train,简称TT)分解技术,提供了对这类大规模稀疏嵌入表的压缩解决方案,同时保证了算法效率和模型性能。

项目介绍

FBTT-Embedding是一个专为解决深度学习中嵌入表存储和计算效率问题设计的库。它兼容PyTorch环境,并能够直接替换PyTorch中的EmbeddingBag组件,实现相同的功能,但加入了压缩机制。此外,该库利用软件缓存策略来加速访问频繁的条目,避免重复的压缩和解压缩过程,显著提升了训练和推理阶段的效率。

技术分析

FBTT-Embedding的核心在于其利用了TT分解,这是一种将高维张量转换为一系列低秩矩阵乘积的技术,从而大幅度减少所需的存储空间。与传统方法相比,FBTT-Embedding通过高度优化的前向传播和后向传播函数,维持了良好的计算效率,即便是对于大规模嵌入表也不例外。项目通过允许用户自定义TT核心的秩、分割形状以及其他初始化参数,实现了灵活的压缩程度和性能调优。

应用场景

该库特别适用于资源受限的环境下进行大规模推荐系统开发和NLP任务。例如,在在线广告投放系统、视频或商品推荐引擎中,巨大的用户和物品特征嵌入表往往导致资源瓶颈,FBTT-Embedding可以有效缓解这一问题。同时,软件缓存策略尤其适合处理热点数据,提高实时推荐系统的响应速度。

项目特点

  1. 高效压缩:采用TT分解技术,显著减小嵌入表的存储需求,而不牺牲模型表现。
  2. 动态缓存:引入智能软件缓存机制,以提升频繁查询项的访问速度,减少运行时计算负担。
  3. 兼容性高:无缝对接PyTorch生态,支持与现有框架结合,降低迁移成本。
  4. 灵活性强:允许用户定制化TT核心参数、选择是否启用缓存以及选择不同的权重分布初始化策略。
  5. 融合优化:提供融合梯度计算与更新功能,进一步加速训练过程,尤其适合稀疏学习场景。
  6. 易于部署:清晰的安装指导和示例代码,方便快速上手。

总之,FBTT-Embedding是针对大规模嵌入表处理的利器,无论是减少内存占用、提升训练效率还是优化推荐系统性能,都能发挥重要作用。对于从事推荐系统、NLP领域的开发者来说,这是一个不可多得的工具库,值得立即纳入您的技术栈之中。

FBTT-EmbeddingThis is a Tensor Train based compression library to compress sparse embedding tables used in large-scale machine learning models such as recommendation and natural language processing. We showed this library can reduce the total model size by up to 100x in Facebook’s open sourced DLRM model while achieving same model quality. Our implementation is faster than the state-of-the-art implementations. Existing the state-of-the-art library also decompresses the whole embedding tables on the fly therefore they do not provide memory reduction during runtime of the training. Our library decompresses only the requested rows therefore can provide 10,000 times memory footprint reduction per embedding table. The library also includes a software cache to store a portion of the entries in the table in decompressed format for faster lookup and process.项目地址:https://gitcode.com/gh_mirrors/fb/FBTT-Embedding

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姚星依Kyla

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值