T-MAC 项目安装与配置指南
T-MAC Low-bit LLM inference on CPU with lookup table 项目地址: https://gitcode.com/gh_mirrors/tm/T-MAC
1. 项目基础介绍
T-MAC(Tensor Mixed Arithmetic Computing)是一个由微软开源的内核库,旨在直接支持混合精度矩阵乘法(int1/2/3/4 x int8/fp16/fp32),无需通过反量化操作,而是利用查找表(LUT)。T-MAC 的目标是提高 CPU 上低比特大型语言模型(LLM)的推理速度。该库支持多种低比特模型,并可在装备有 ARM/Intel CPU 的 macOS/Linux/Windows 系统上运行。
主要编程语言:C++、Python
2. 项目使用的关键技术和框架
- 混合精度计算:通过利用查找表代替传统的乘加操作,减少计算复杂度和提高能效。
- 低比特模型支持:支持多种低比特模型,如 GPTQ、BitDistiller、EfficientQAT 和 BitNet 等。
- 多线程优化:通过多线程技术提升计算性能,适应不同设备的硬件特性。
3. 项目安装和配置的准备工作与详细步骤
准备工作
- 确保系统中已安装 CMake(版本至少为 3.15)。
- 安装 Python(版本至少为 3.6)和相应的开发工具。
- 根据操作系统安装必要的依赖库。
对于 macOS 用户:
brew install cmake python
对于 Ubuntu 用户:
sudo apt-get update
sudo apt-get install cmake python3 python3-dev
对于 Windows 用户:
- 下载并安装 CMake 和 Python。
- 确保它们被添加到系统路径中。
安装步骤
- 克隆项目仓库:
git clone https://github.com/microsoft/T-MAC.git
cd T-MAC
- 创建一个构建目录并编译项目:
mkdir build
cd build
cmake ..
make
- 安装 Python 包(如果需要使用 Python 接口):
cd ..
pip install .
- 验证安装:
- 运行示例代码或执行测试用例来确保安装正确。
python examples/test_t_mac.py
以上步骤为 T-MAC 的基本安装流程。根据具体的需求,可能还需要进行进一步的配置和优化。请参考项目官方文档以获取更多详细信息。
T-MAC Low-bit LLM inference on CPU with lookup table 项目地址: https://gitcode.com/gh_mirrors/tm/T-MAC