T-MAC 项目安装与配置指南

T-MAC 项目安装与配置指南

T-MAC Low-bit LLM inference on CPU with lookup table T-MAC 项目地址: https://gitcode.com/gh_mirrors/tm/T-MAC

1. 项目基础介绍

T-MAC(Tensor Mixed Arithmetic Computing)是一个由微软开源的内核库,旨在直接支持混合精度矩阵乘法(int1/2/3/4 x int8/fp16/fp32),无需通过反量化操作,而是利用查找表(LUT)。T-MAC 的目标是提高 CPU 上低比特大型语言模型(LLM)的推理速度。该库支持多种低比特模型,并可在装备有 ARM/Intel CPU 的 macOS/Linux/Windows 系统上运行。

主要编程语言:C++、Python

2. 项目使用的关键技术和框架

  • 混合精度计算:通过利用查找表代替传统的乘加操作,减少计算复杂度和提高能效。
  • 低比特模型支持:支持多种低比特模型,如 GPTQ、BitDistiller、EfficientQAT 和 BitNet 等。
  • 多线程优化:通过多线程技术提升计算性能,适应不同设备的硬件特性。

3. 项目安装和配置的准备工作与详细步骤

准备工作

  • 确保系统中已安装 CMake(版本至少为 3.15)。
  • 安装 Python(版本至少为 3.6)和相应的开发工具。
  • 根据操作系统安装必要的依赖库。
对于 macOS 用户:
brew install cmake python
对于 Ubuntu 用户:
sudo apt-get update
sudo apt-get install cmake python3 python3-dev
对于 Windows 用户:
  • 下载并安装 CMake 和 Python。
  • 确保它们被添加到系统路径中。

安装步骤

  1. 克隆项目仓库:
git clone https://github.com/microsoft/T-MAC.git
cd T-MAC
  1. 创建一个构建目录并编译项目:
mkdir build
cd build
cmake ..
make
  1. 安装 Python 包(如果需要使用 Python 接口):
cd ..
pip install .
  1. 验证安装:
  • 运行示例代码或执行测试用例来确保安装正确。
python examples/test_t_mac.py

以上步骤为 T-MAC 的基本安装流程。根据具体的需求,可能还需要进行进一步的配置和优化。请参考项目官方文档以获取更多详细信息。

T-MAC Low-bit LLM inference on CPU with lookup table T-MAC 项目地址: https://gitcode.com/gh_mirrors/tm/T-MAC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲍珍博Quinn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值