Apache Flink CDC 数据转换功能详解

Apache Flink CDC 数据转换功能详解

flink-cdc Flink CDC is a streaming data integration tool flink-cdc 项目地址: https://gitcode.com/gh_mirrors/flin/flink-cdc

概述

Apache Flink CDC 的数据转换(Transform)模块是一个强大的数据处理工具,它允许用户在数据同步过程中对数据进行灵活的处理和转换。该模块主要提供三大核心功能:

  1. 列操作:支持列的删除、重命名和扩展
  2. 数据过滤:可以在同步过程中过滤掉不需要的数据
  3. 元数据处理:支持访问和操作表的元数据信息

核心概念解析

转换规则参数

转换规则由一组参数定义,这些参数决定了如何处理输入数据:

| 参数名称 | 作用描述 | 是否必填 | |----------------|-------------------------------------------------------------------------|---------| | source-table | 指定源表标识,支持正则表达式匹配 | 必填 | | projection | 定义列投影规则,语法类似SQL的SELECT子句 | 可选 | | filter | 定义过滤条件,语法类似SQL的WHERE子句 | 可选 | | primary-keys | 指定目标表的主键,多个主键用逗号分隔 | 可选 | | partition-keys | 指定目标表的分区键,多个分区键用逗号分隔 | 可选 | | table-options | 用于配置自动创建表时的表选项 | 可选 | | description | 转换规则的描述信息 | 可选 |

元数据字段

Flink CDC 提供了一些隐藏的元数据字段,可以在转换规则中显式引用:

  • __namespace_name__: 包含行的命名空间名称
  • __schema_name__: 包含行的模式名称
  • __table_name__: 包含行的表名称

不同数据源的元数据对应关系如下:

| 数据源类型 | Namespace对应 | SchemaName对应 | Table对应 | |----------------|--------------|---------------|----------| | JDBC | Catalog | Schema | Table | | MySQL | Database | - | Table | | PostgreSQL | Database | Schema | Table | | Oracle | - | Schema | Table | | SQL Server | Database | Schema | Table |

功能详解

1. 计算列添加

可以在投影规则中使用表达式生成新的计算列:

transform:
  - source-table: mydb.web_order
    projection: id, order_id, UPPER(product_name) as product_name, localtimestamp as new_timestamp

这个例子中,我们将product_name转换为大写,并添加了一个当前时间戳列。

2. 元数据列引用

可以组合使用元数据列构建新的列:

transform:
  - source-table: mydb.web_order
    projection: id, order_id, __namespace_name__ || '.' || __schema_name__ || '.' || __table_name__ as identifier_name

这会生成一个包含完整表标识符的新列。

3. 通配符使用

使用*可以引用所有列,注意当通配符出现在表达式开头时需要转义:

transform:
  - source-table: mydb.web_order
    projection: \*, UPPER(product_name) as product_name

4. 数据过滤

可以使用类似SQL WHERE子句的语法过滤数据:

transform:
  - source-table: mydb.web_order
    filter: id > 10 AND order_id > 100

也可以在过滤条件中使用计算列:

transform:
  - source-table: mydb.web_order
    projection: id, order_id, UPPER(province) as new_province 
    filter: new_province = 'SHANGHAI'

5. 主键重定义

可以重新定义目标表的主键:

transform:
  - source-table: mydb.web_order
    primary-keys: order_id

也支持复合主键:

transform:
  - source-table: mydb.web_order
    primary-keys: order_id, product_name

6. 分区键指定

可以指定目标表的分区键:

transform:
  - source-table: mydb.web_order
    partition-keys: product_name

7. 表创建选项

可以在自动创建表时指定表选项:

transform:
  - source-table: mydb.web_order
    table-options: comment='web order', compression='lz4'

8. 分类映射

可以定义多个转换规则实现数据分类处理:

transform:
  - source-table: mydb.web_order
    projection: id, order_id
    filter: UPPER(province) = 'SHANGHAI'
  - source-table: mydb.web_order
    projection: order_id as id, id as order_id
    filter: UPPER(province) = 'BEIJING'

函数支持

Flink CDC 转换模块支持丰富的函数,包括:

  1. 比较函数:=, <>, >, >=, <, <=, IS NULL, IS NOT NULL, BETWEEN, LIKE, IN等
  2. 逻辑函数:AND, OR, NOT, IS TRUE, IS FALSE等
  3. 算术函数:+, -, *, /, %, ABS, CEIL, FLOOR, ROUND, UUID等
  4. 字符串函数:CONCAT, CHAR_LENGTH, UPPER, LOWER, TRIM, REGEXP_REPLACE, SUBSTRING等
  5. 时间函数:LOCALTIME, LOCALTIMESTAMP, CURRENT_DATE, DATE_FORMAT, TIMESTAMPDIFF等
  6. 条件函数:CASE WHEN, COALESCE, IF等

实际应用场景

  1. 数据清洗:过滤无效数据,标准化数据格式
  2. 数据脱敏:对敏感信息进行转换或屏蔽
  3. 数据聚合:基于条件对数据进行分类处理
  4. 数据结构调整:重命名列、调整列顺序、添加计算列
  5. 多源整合:统一不同数据源的结构差异

注意事项

  1. 当前版本中,转换功能还不能与路由规则同时使用
  2. 计算列不能引用在最终投影结果中被裁剪的列
  3. 不支持跨不同模式的表进行正则匹配,需要为每个模式单独编写规则

通过灵活运用Flink CDC的转换功能,可以大大简化数据集成和ETL流程,实现更高效的数据处理。

flink-cdc Flink CDC is a streaming data integration tool flink-cdc 项目地址: https://gitcode.com/gh_mirrors/flin/flink-cdc

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翁晔晨Jane

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值