DMS Explorer (DLNA播放器) 使用指南

DMS Explorer (DLNA播放器) 使用指南

dms-explorerDLNA Player for Android项目地址:https://gitcode.com/gh_mirrors/dm/dms-explorer

项目介绍

DMS Explorer是一款基于DLNA协议的播放器应用,由OHMAE Ryosuke开发并遵循MIT开源许可协议。该应用特色在于展示DLNA服务器(DMS)及其内容的元数据信息。不仅如此,它还内置了DMC(Digital Media Controller)功能,允许用户将内容从DMS回放至支持DMR(Digital Media Renderer)的设备上,比如同在网络内的智能电视。源代码公开,便于开发者学习和自定义扩展。

项目快速启动

环境要求

  • Android设备,系统版本5.1及以上。
  • 开发者环境:如需修改或编译项目,需具备Android Studio及Java Development Kit (JDK)。

安装步骤

  1. 克隆项目: 在命令行中执行以下命令以获取项目源码。

    git clone https://github.com/ohmae/dms-explorer.git
    
  2. 导入项目: 打开Android Studio,选择"Open an existing Android Studio project",然后导航到你刚刚克隆的项目目录并打开。

  3. 配置与编译: 确保所有的依赖已经被正确解析,如果没有自动完成,可能需要手动同步Gradle文件。然后点击运行按钮或者使用Run 'app'来编译并在连接的Android设备上部署应用。

示例代码片段

虽然直接的代码运行不在终端用户操作范围内,但理解其核心逻辑重要。这里不直接提供用户界面交互代码,但简单说明如何启动DLNA浏览:

在开发环境中,你会处理类似的服务发现逻辑,示例逻辑而非实际代码:

// 假设有一个函数用于初始化并查找DLNA设备
void discoverAndConnect() {
    // 示例逻辑,真实实现涉及复杂的DLNA协议交互
    DlnaService.discoverDevices(); // 假定服务,实际中需要实现服务发现
    DlnaService.onDeviceFound(device -> {
        // 连接并显示设备内容
        showDeviceContent(device);
    });
}

应用案例和最佳实践

  • 家庭娱乐中心集成:将DMS Explorer配置为家庭媒体中心的控制枢纽,轻松地从NAS或其他DLNA兼容的存储设备播放音乐、视频到任何支持DMR的设备上。

  • 多设备流媒体控制:利用DMC功能,用户可以从一个中央位置管理多个房间中的流媒体播放,统一控制体验。

最佳实践提示

  • 确保所有设备位于同一局域网内,以确保稳定的数据传输。
  • 优化媒体文件格式,优先考虑Android设备普遍支持的格式,如H.264、VP8、VP9,以获得更广泛的设备兼容性。

典型生态项目

在DLNA生态系统中,DMS Explorer可以与其他智能家居设备无缝协作,如Synology NAS、Sony的Nasne或是Panasonic录像机,这些设备通常作为DMS或DMR存在。通过集成,用户不仅能实现内容的便捷管理播放,还能利用特定设备的高级功能,例如章节跳跃在支持的Sony录像机上。此外,结合其他智能家居控制系统,可以进一步自动化媒体播放流程,提升用户体验。


本文档提供了DMS Explorer的基本介绍、快速入门指导以及在实际应用中的建议,帮助用户和开发者更好地理解和运用这一开源DLNA播放器工具。

dms-explorerDLNA Player for Android项目地址:https://gitcode.com/gh_mirrors/dm/dms-explorer

  • 21
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乌宣广

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值