ArbSR 开源项目教程

ArbSR 开源项目教程

ArbSR [ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution ArbSR 项目地址: https://gitcode.com/gh_mirrors/arb/ArbSR

1. 项目的目录结构及介绍

ArbSR 项目的目录结构如下:

ArbSR/
├── configs/
│   ├── base.yaml
│   ├── dataset.yaml
│   └── model.yaml
├── data/
│   ├── test/
│   └── train/
├── models/
│   ├── __init__.py
│   ├── base_model.py
│   └── sr_model.py
├── scripts/
│   ├── train.py
│   └── test.py
├── utils/
│   ├── __init__.py
│   ├── data_utils.py
│   └── model_utils.py
├── README.md
└── requirements.txt

目录结构介绍

  • configs/: 存放项目的配置文件,包括基本配置、数据集配置和模型配置。
  • data/: 存放训练和测试数据集。
  • models/: 存放模型的实现代码。
  • scripts/: 存放训练和测试脚本。
  • utils/: 存放工具函数和辅助代码。
  • README.md: 项目的基本介绍和使用说明。
  • requirements.txt: 项目所需的依赖包列表。

2. 项目的启动文件介绍

项目的启动文件主要位于 scripts/ 目录下,包括 train.pytest.py

train.py

train.py 是用于训练模型的脚本。它读取配置文件中的参数,加载数据集,初始化模型,并开始训练过程。训练过程中会保存模型权重和训练日志。

test.py

test.py 是用于测试模型的脚本。它加载训练好的模型权重,读取测试数据集,并输出模型的预测结果。

3. 项目的配置文件介绍

项目的配置文件位于 configs/ 目录下,主要包括 base.yamldataset.yamlmodel.yaml

base.yaml

base.yaml 是项目的基本配置文件,包含一些通用的配置项,如日志路径、模型保存路径等。

dataset.yaml

dataset.yaml 是数据集的配置文件,包含数据集的路径、数据预处理参数等。

model.yaml

model.yaml 是模型的配置文件,包含模型的结构参数、优化器参数、学习率等。

这些配置文件通过 train.pytest.py 脚本读取,并用于初始化训练和测试过程。

ArbSR [ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution ArbSR 项目地址: https://gitcode.com/gh_mirrors/arb/ArbSR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滕骅照Fitzgerald

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值