ArbSR 开源项目教程
1. 项目的目录结构及介绍
ArbSR 项目的目录结构如下:
ArbSR/
├── configs/
│ ├── base.yaml
│ ├── dataset.yaml
│ └── model.yaml
├── data/
│ ├── test/
│ └── train/
├── models/
│ ├── __init__.py
│ ├── base_model.py
│ └── sr_model.py
├── scripts/
│ ├── train.py
│ └── test.py
├── utils/
│ ├── __init__.py
│ ├── data_utils.py
│ └── model_utils.py
├── README.md
└── requirements.txt
目录结构介绍
- configs/: 存放项目的配置文件,包括基本配置、数据集配置和模型配置。
- data/: 存放训练和测试数据集。
- models/: 存放模型的实现代码。
- scripts/: 存放训练和测试脚本。
- utils/: 存放工具函数和辅助代码。
- README.md: 项目的基本介绍和使用说明。
- requirements.txt: 项目所需的依赖包列表。
2. 项目的启动文件介绍
项目的启动文件主要位于 scripts/
目录下,包括 train.py
和 test.py
。
train.py
train.py
是用于训练模型的脚本。它读取配置文件中的参数,加载数据集,初始化模型,并开始训练过程。训练过程中会保存模型权重和训练日志。
test.py
test.py
是用于测试模型的脚本。它加载训练好的模型权重,读取测试数据集,并输出模型的预测结果。
3. 项目的配置文件介绍
项目的配置文件位于 configs/
目录下,主要包括 base.yaml
、dataset.yaml
和 model.yaml
。
base.yaml
base.yaml
是项目的基本配置文件,包含一些通用的配置项,如日志路径、模型保存路径等。
dataset.yaml
dataset.yaml
是数据集的配置文件,包含数据集的路径、数据预处理参数等。
model.yaml
model.yaml
是模型的配置文件,包含模型的结构参数、优化器参数、学习率等。
这些配置文件通过 train.py
和 test.py
脚本读取,并用于初始化训练和测试过程。