FuseMedML:加速医学领域机器学习发现的利器

FuseMedML:加速医学领域机器学习发现的利器

fuse-med-mlA python framework accelerating ML based discovery in the medical field by encouraging code reuse. Batteries included :)项目地址:https://gitcode.com/gh_mirrors/fu/fuse-med-ml

项目介绍

FuseMedML 是一个旨在加速医学领域机器学习发现的 Python 框架。它通过鼓励代码重用来减少重复劳动,从而显著提升研究效率。FuseMedML 是 PyTorch 生态系统的一部分,提供了丰富的功能模块,包括数据处理、模型评估和深度学习组件等。无论你是医学影像分析、疾病预测还是药物发现领域的研究人员,FuseMedML 都能为你提供强大的支持。

项目技术分析

核心设计理念

FuseMedML 的核心设计理念是使用嵌套字典(Nested Dictionary)来存储数据。这种设计不仅灵活,还能轻松处理多模态信息。通过定义输入和输出键,组件可以从嵌套字典中读取和写入数据,从而实现高度的代码重用。

组件示例

FuseMedML 提供了多种预定义组件,如多头部模型、默认损失函数和评估指标等。这些组件都遵循相同的设计理念,使得它们可以在不同项目中轻松复用。例如,一个多头部模型组件可以定义如下:

ModelMultiHead(
    conv_inputs=(('data.input.img', 1),),                                       # 输入到主干模型的数据
    backbone=BackboneResnet3D(in_channels=1),                                   # PyTorch nn 模块
    heads=[                                                                     # 头部列表,支持多任务/多头方法
               Head3D(head_name='classification',
                                mode="classification",
                                conv_inputs=[("model.backbone_features", 512)]  # 输入到分类头的数据
                                ,),
          ]
)

自定义组件

创建自定义 FuseMedML 组件也非常简单。例如,你可以创建一个新的数据处理操作符:

class OpPad(OpBase):
    def __call__(self, sample_dict: NDict,
        key_in: str,
        padding: List[int], fill: int = 0, mode: str = 'constant',
        key_out:Optional[str]=None,
        ):

        # 从指定键位置提取元素(例如 'input.xray_img')
        img = sample_dict[key_in]
        assert isinstance(img, np.ndarray), f'Expected np.ndarray but got {type(img)}'
        processed_img = np.pad(img, pad_width=padding, mode=mode, constant_values=fill)

        # 将结果存储在请求的输出键中(如果没有提供 key_out,则使用 key_in)
        key_out = key_in if key_out is None
        sample_dict[key_out] = processed_img

        # 返回修改后的嵌套字典
        return sample_dict

内置组件

FuseMedML 提供了丰富的内置组件,包括:

  • fuse.data:一个声明式的超灵活数据处理管道,支持复杂的多模态场景和高级缓存功能。
  • fuse.eval:一个独立的模型评估库,包含多种现成的评估指标和实用工具。
  • fuse.dl:可重用的深度学习模型架构组件、损失函数等。

项目及技术应用场景

FuseMedML 适用于各种医学领域的机器学习项目,特别是那些需要处理多模态数据和复杂数据管道的场景。例如:

  • 医学影像分析:FuseMedML 的 fuseimg 扩展已经在多个医学影像项目中得到验证,支持不同的器官、成像模态和任务。
  • 药物发现:即将发布的 fusedrug 扩展专注于分子生物学和化学领域,支持预测、生成等任务。
  • 疾病预测:通过 FuseMedML 的数据处理和模型评估组件,研究人员可以快速构建和评估疾病预测模型。

项目特点

1. 高度灵活的数据结构

FuseMedML 使用嵌套字典来存储数据,这种设计不仅灵活,还能轻松处理多模态信息。通过定义输入和输出键,组件可以从嵌套字典中读取和写入数据,从而实现高度的代码重用。

2. 丰富的内置组件

FuseMedML 提供了丰富的内置组件,包括数据处理、模型评估和深度学习组件等。这些组件都遵循相同的设计理念,使得它们可以在不同项目中轻松复用。

3. 支持多种深度学习库

FuseMedML 支持多种深度学习库,包括 PyTorch 和 PyTorch Lightning。这些库与 FuseMedML 配合使用,可以为研究人员提供强大的支持。

4. 易于扩展

FuseMedML 鼓励用户创建和贡献领域扩展包。你可以根据自己的需求创建新的领域扩展包,或者为现有的扩展包贡献代码。

5. 社区支持

FuseMedML 拥有一个活跃的社区,用户可以通过 Slack 频道加入讨论,获取支持和反馈。

结语

FuseMedML 是一个强大的开源框架,旨在加速医学领域的机器学习发现。通过鼓励代码重用和提供丰富的内置组件,FuseMedML 可以帮助研究人员快速构建和评估复杂的机器学习模型。无论你是医学影像分析、疾病预测还是药物发现领域的研究人员,FuseMedML 都值得一试。

立即加入 FuseMedML 社区,体验代码重用的魔力吧!

安装指南 | 示例代码 | 社区支持 | 贡献指南 | 引用信息

fuse-med-mlA python framework accelerating ML based discovery in the medical field by encouraging code reuse. Batteries included :)项目地址:https://gitcode.com/gh_mirrors/fu/fuse-med-ml

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

廉艳含

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值