MMSelfSup 自监督学习框架配置系统详解

MMSelfSup 自监督学习框架配置系统详解

mmselfsup OpenMMLab Self-Supervised Learning Toolbox and Benchmark mmselfsup 项目地址: https://gitcode.com/gh_mirrors/mm/mmselfsup

概述

MMSelfSup 是一个基于 PyTorch 的自监督学习框架,其配置系统采用了模块化和继承的设计理念,使得实验配置更加灵活和高效。本文将深入解析 MMSelfSup 的配置系统,帮助用户更好地理解和使用这一框架。

配置文件命名规范

MMSelfSup 采用了一套清晰的配置文件命名规范,文件名由四部分组成:

{算法信息}_{模块信息}_{训练信息}_{数据信息}.py

1. 算法信息

算法信息部分包含算法名称及其版本信息,例如:

  • simclr - SimCLR 算法
  • mocov2 - MoCo v2 算法
  • relative-loc - 相对位置预测算法

2. 模块信息

模块信息主要描述模型结构,包括:

  • 主干网络:如 resnet50vit-base-p16
  • 颈部结构:如 mocov2neck
  • 头部结构:如 contrastivehead
  • 损失函数:如 crossentropyloss

3. 训练信息

训练信息包含训练相关的参数:

  • 批量大小:如 8xb32 表示 8 个 GPU,每个 GPU 32 个样本
  • 训练策略:如 coslr 表示余弦学习率衰减
  • 训练轮数:如 200e 表示训练 200 个 epoch

4. 数据信息

数据信息描述数据集和输入尺寸:

  • in1k - ImageNet-1K 数据集,默认 224x224 输入
  • in1k-384 - ImageNet-1K 数据集,384x384 输入
  • cifar10 - CIFAR-10 数据集

示例解析

swav_resnet50_8xb32-mcrop-2-6-coslr-200e_in1k-224-96.py 为例:

  • swav:SWAV 算法
  • resnet50:ResNet50 主干网络
  • 8xb32-mcrop-2-6-coslr-200e:8 GPU,批量 32,多裁剪(2+6),余弦学习率,200 epoch
  • in1k-224-96:ImageNet-1K 数据集,224x224 和 96x96 输入

配置文件结构

MMSelfSup 的配置文件采用模块化设计,主要包含四个基础部分:

  1. 模型配置:定义模型结构、损失函数等
  2. 数据集配置:定义数据加载、预处理等
  3. 训练计划:定义优化器、学习率策略等
  4. 运行时配置:定义日志、检查点等

配置继承机制

MMSelfSup 支持配置文件的继承,用户可以通过 _base_ 字段继承现有配置,只需修改需要的部分即可创建新配置。例如:

_base_ = './mocov2_resnet50_8xb32-coslr-200e_in1k.py'

# 修改训练轮数为 800
param_scheduler = [
    dict(type='CosineAnnealingLR', T_max=800, by_epoch=True, begin=0, end=800)
]

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=800)

高级配置技巧

  1. 使用中间变量:将常用配置定义为变量,提高可读性和复用性
dataset_type = 'mmcls.ImageNet'
data_root = 'data/imagenet/'
train_pipeline = [...]
  1. 删除基类配置:使用 _delete_=True 完全替换基类中的某些配置
model = dict(
    neck=dict(
        _delete_=True,
        type='MoCoV2Neck',
        ...))
  1. 复用基类变量:使用 {{_base_.xxx}} 引用基类中的变量
model = dict(
    head=dict(num_classes={{_base_.num_classes}}))

运行时配置修改

MMSelfSup 支持在运行脚本时动态修改配置:

python tools/train.py config.py --cfg-options model.backbone.norm_eval=False

可以修改:

  • 字典键值:data.train.pipeline.1.flip_prob=0.0
  • 列表/元组:param_scheduler="[dict(type='LinearLR',...)]"

跨代码库模块导入

当需要使用其他 OpenMMLab 代码库中的模块时,可以在配置中添加:

custom_imports = dict(
    imports=['mmcls.datasets', 'mmcls.models'],
    allow_failed_imports=False)

总结

MMSelfSup 的配置系统通过模块化设计和继承机制,提供了极大的灵活性。理解其命名规范和结构设计,可以帮助用户快速构建和修改实验配置,提高研究效率。建议用户在创建新配置时遵循相同的规范,保持项目的一致性和可维护性。

mmselfsup OpenMMLab Self-Supervised Learning Toolbox and Benchmark mmselfsup 项目地址: https://gitcode.com/gh_mirrors/mm/mmselfsup

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱焰菲Wesley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值