BEIR 开源项目使用教程

BEIR 开源项目使用教程

项目地址:https://gitcode.com/gh_mirrors/be/beir

项目介绍

BEIR 是一个异构的信息检索基准,包含多样化的 IR 任务。它提供了一个通用且易于使用的框架,用于评估 NLP 驱动的检索模型。BEIR 支持跨 15 个以上的不同 IR 数据集进行模型评估。

项目快速启动

安装

你可以通过 pip 安装 BEIR:

pip install beir

如果你想从源代码构建,可以使用以下命令:

git clone https://github.com/beir-cellar/beir.git
cd beir
pip install -e .

快速示例

以下是一个简单的示例,展示如何使用 BEIR 进行信息检索模型的评估:

from beir import util, LoggingHandler
from beir.retrieval import models
from beir.datasets.data_loader import GenericDataLoader

# 加载数据集
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scifact.zip"
data_path = util.download_and_unzip(url, "datasets")
corpus, queries, qrels = GenericDataLoader(data_folder=data_path).load(split="test")

# 加载模型
model = models.SentenceBERT("msmarco-distilbert-base-v3")

# 评估模型
results = model.retrieve(corpus, queries)

# 打印结果
for query_id, query_results in results.items():
    print(f"Query: {queries[query_id]}")
    for rank, (doc_id, score) in enumerate(query_results.items()):
        print(f"Rank {rank+1}: {corpus[doc_id]['title']} (Score: {score})")

应用案例和最佳实践

应用案例

BEIR 可以用于多种信息检索任务,包括但不限于:

  • 文档检索
  • 问答系统
  • 跨语言检索

最佳实践

  • 数据预处理:确保数据集的格式符合 BEIR 的要求。
  • 模型选择:根据任务需求选择合适的模型,如 SentenceBERT、DPR 等。
  • 超参数调优:通过调整模型的超参数来提高检索性能。

典型生态项目

Hugging Face

BEIR 与 Hugging Face 的模型库紧密集成,可以轻松加载和使用预训练的检索模型。

Eval AI

Eval AI 提供了 BEIR 的排行榜,可以用于评估和比较不同模型的性能。

UKP Lab

UKP Lab 是 BEIR 的主要贡献者之一,提供了多个数据集和参考模型。

通过以上内容,你可以快速上手并深入了解 BEIR 开源项目。希望这篇教程对你有所帮助!

beir A Heterogeneous Benchmark for Information Retrieval. Easy to use, evaluate your models across 15+ diverse IR datasets. beir 项目地址: https://gitcode.com/gh_mirrors/be/beir

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咎宁准Karena

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值