Apache Spark on Kubernetes 使用指南

Apache Spark on Kubernetes 使用指南

spark-on-kubernetes-helm Spark on Kubernetes infrastructure Helm charts repo spark-on-kubernetes-helm 项目地址: https://gitcode.com/gh_mirrors/spa/spark-on-kubernetes-helm

项目介绍

Apache Spark 是一个开源的大数据处理框架,以其高性能的分布式计算能力而闻名。本项目提供了一个基于 Helm 的部署方案,允许开发者和运维人员在 Kubernetes 集群上轻松地安装和管理 Spark。通过 spark-on-kubernetes-helm 这个GitHub仓库,用户可以利用Helm图表简化Spark在Kubernetes环境中的部署过程,使得资源管理和应用生命周期控制更加便捷。

项目快速启动

在开始之前,请确保你的环境中已经安装了Helm、kubectl,并且有一个运行中的Kubernetes集群。还需要设置好kubeconfig以访问该集群。

步骤一:添加Helm仓库

首先,你需要添加Spark的Helm仓库到你的Helm配置中:

helm repo add Jahstreet https://jahstreet.github.io/charts

然后更新Helm的图表列表来确保新添加的仓库被同步:

helm repo update

步骤二:部署Spark

接下来,你可以使用下面的命令部署Spark。这里以默认配置为例,实际生产环境中可能需要调整配置参数。

helm install spark-on-kubernetes Jahstreet/spark-on-kubernetes

如果你想自定义配置,可以通过创建一个值文件(如 values.yaml),并在安装时指定它:

helm install spark-on-kubernetes -f my-values.yaml Jahstreet/spark-on-kubernetes

应用案例和最佳实践

在Kubernetes上运行Spark作业时,有几个最佳实践应该遵循:

  • 服务账户与权限:确保用于驱动程序的服务账户具有创建和管理Pod、Service及ConfigMap的权限。
  • 资源管理:合理设定Executor的资源需求(CPU和内存),避免资源浪费。
  • 持久化存储:对于需要长期存储的数据,使用PVC(Persistent Volume Claim)并考虑重用策略。
  • 命名空间管理:为了更好的资源隔离,推荐在特定命名空间内部署Spark应用。
  • 网络与通信:利用Kubernetes的服务发现机制,简化Spark组件间的通信配置。

典型生态项目

Spark在Kubernetes上的部署不仅限于核心功能,还可以与其他云原生工具集成,形成强大的数据处理流水线,例如:

  • Prometheus监控集成:可以部署Prometheus和Grafana来监控Spark作业的性能。
  • Airflow调度:使用Apache Airflow作为工作流引擎,调度在Kubernetes上的Spark任务,实现复杂的工作流程自动化。
  • GitOps方式部署:结合ArgoCD或Flux CD等GitOps工具,实现Spark应用的版本控制和持续部署。

通过这些生态系统项目与Apache Spark的集成,用户能够构建高度灵活、可扩展和自动化的数据处理系统。


以上就是基于spark-on-kubernetes-helm的简要部署指南和相关实践建议,希望能帮助您高效地在Kubernetes上启动和管理Apache Spark应用。

spark-on-kubernetes-helm Spark on Kubernetes infrastructure Helm charts repo spark-on-kubernetes-helm 项目地址: https://gitcode.com/gh_mirrors/spa/spark-on-kubernetes-helm

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

内容概要:该论文深入研究了液压挖掘机动臂下降势能回收技术,旨在解决传统液压挖掘机能耗高的问题。提出了一种新型闭式回路势能回收系统,利用模糊PI自整定控制算法控制永磁无刷直流电动机,实现了变转速容积调速控制,消除了节流和溢流损失。通过建立数学模型和仿真模型,分析了不同负载下的系统性能,并开发了试验平台验证系统的高效性和节能效果。研究还涵盖了执行机构能量分布分析、系统元件参数匹配及电机控制性能优化,为液压挖掘机节能技术提供了理论和实践依据。此外,通过实验验证,该系统相比传统方案可降低28%的能耗,控制系统响应时间缩短40%,为工程机械的绿色化、智能化发展提供了关键技术支撑。 适合人群:从事工程机械设计、制造及维护的工程师和技术人员,以及对液压系统节能技术感兴趣的科研人员。 使用场景及目标:①理解液压挖掘机闭式回路动臂势能回收系统的原理和优势;②掌握模糊PI自整定控制算法的具体实现;③学习如何通过理论建模、仿真和实验验证来评估和优化液压系统的性能。 其他说明:此研究不仅提供了详细的理论分析和数学建模,还给出了具体的仿真代码和实验数据,便于读者在实际工作中进行参考和应用。研究结果表明,该系统不仅能显著提高能源利用效率,还能延长设备使用寿命,降低维护成本,具有重要的工程应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郜毓彬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值