RyzenAdj使用手册

RyzenAdj使用手册

项目地址:https://gitcode.com/gh_mirrors/ry/RyzenAdj

项目介绍

RyzenAdj 是一个专为调整 Ryzen 系列APU电源管理设置而设计的开源工具。它允许用户微调诸如持续功率限制、快速功率限制等关键参数,以及控制Tctl温度等,从而优化性能与能耗比。该工具基于LGPL-3.0许可证发布,提供了一种灵活的方式来适应不同使用场景下的功耗需求。

项目快速启动

在Linux上的快速启动

在Linux环境下使用RyzenAdj非常直接。首先,确保你拥有git、cmake和适当的编译工具。然后,按照以下步骤操作:

$ git clone https://github.com/FlyGoat/RyzenAdj.git
$ cd RyzenAdj
$ mkdir build && cd build
$ cmake -DCMAKE_BUILD_TYPE=Release ..
$ make

完成后,你可以选择将可执行文件ryzenadj放到系统路径中,例如:

sudo cp ryzenadj /usr/local/bin/

在Windows上的指导

尽管项目方不推荐自行在Windows构建环境复杂的条件,但你可以使用Visual Studio或Clang通过MSVC或Nmake来编译。重要的是要将所需的dll和sys驱动放在可执行文件同一目录下。由于编译的复杂性,建议查找预编译版本或者熟悉相关开发环境后再尝试。

应用案例和最佳实践

对于想要提升Ryzen APU性能或优化电池寿命的用户,RyzenAdj提供了精细调控的能力。例如,设定所有功率限制至45W并把Tctl温度设定为90°C,可以这样执行命令:

ryzenadj --stapm-limit=45000 --fast-limit=45000 --slow-limit=45000 --tctl-temp=90

请注意,频繁的手动调整可能因设备自带的电源管理策略而被覆盖,因此自动化脚本可能是维持特定设置的好方法。

典型生态项目

虽然RyzenAdj本身是一个独立的工具,但在更广泛的生态系统中,它常与其他系统监控和自动化工具结合使用。开发者可以将其功能集成到自定义的系统调整脚本或是硬件监控界面中,以实现更加个性化的电源管理和性能调节方案。不过,具体与RyzenAdj集成的其他开源项目实例较少直接提及,通常由用户根据自身需要开发或集成。


此手册旨在快速引导用户了解并开始使用RyzenAdj,进行处理器电源管理的高级定制。用户在实际操作前应仔细阅读项目的最新文档,以获取最准确的操作指南和注意事项。

RyzenAdj Adjust power management settings for Ryzen APUs RyzenAdj 项目地址: https://gitcode.com/gh_mirrors/ry/RyzenAdj

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何媚京

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值