SE3-Transformer-PyTorch 项目教程
项目地址:https://gitcode.com/gh_mirrors/se/se3-transformer-pytorch
1. 项目的目录结构及介绍
se3-transformer-pytorch/
├── README.md
├── setup.py
├── se3_transformer_pytorch
│ ├── __init__.py
│ ├── se3_transformer.py
│ ├── utils.py
│ └── ...
└── tests
├── __init__.py
├── test_se3_transformer.py
└── ...
- README.md: 项目说明文件,包含项目的基本介绍、安装方法和使用示例。
- setup.py: 项目的安装脚本,用于通过 pip 安装项目。
- se3_transformer_pytorch: 项目的主要代码目录,包含核心模块和工具函数。
- init.py: 初始化文件,使目录成为一个 Python 包。
- se3_transformer.py: SE3-Transformer 模型的实现文件。
- utils.py: 包含一些辅助函数和工具。
- tests: 包含项目的测试文件,用于确保代码的正确性。
- init.py: 初始化文件,使目录成为一个 Python 包。
- test_se3_transformer.py: 针对 SE3-Transformer 模型的测试文件。
2. 项目的启动文件介绍
项目的启动文件主要是 se3_transformer.py
,其中定义了 SE3-Transformer 模型的核心类和函数。以下是该文件的主要内容:
from torch import nn
import torch
class SE3Transformer(nn.Module):
def __init__(self, dim, heads, depth, dim_head, num_degrees, valid_radius):
super().__init__()
# 初始化模型参数和子模块
...
def forward(self, feats, coors, mask):
# 前向传播逻辑
...
return output
- SE3Transformer: 定义了 SE3-Transformer 模型的类,包含初始化方法和前向传播方法。
3. 项目的配置文件介绍
项目中没有显式的配置文件,但可以通过修改 se3_transformer.py
中的参数来配置模型。以下是一些关键参数的介绍:
- dim: 输入特征的维度。
- heads: 多头注意力机制的头数。
- depth: 模型的层数。
- dim_head: 每个注意力头的维度。
- num_degrees: 输入特征的度数。
- valid_radius: 有效半径,用于定义邻域。
通过调整这些参数,可以定制化 SE3-Transformer 模型以适应不同的应用场景。