HunyuanImage-3.0学术引用指南:论文写作与技术报告规范

HunyuanImage-3.0学术引用指南:论文写作与技术报告规范

【免费下载链接】HunyuanImage-3.0 HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型 【免费下载链接】HunyuanImage-3.0 项目地址: https://ai.gitcode.com/tencent_hunyuan/HunyuanImage-3.0

引言:为什么规范引用至关重要

在学术研究和技术文档中,正确引用开源模型不仅是对原作者知识产权的尊重,也是确保研究可追溯性和可重复性的关键步骤。HunyuanImage-3.0作为腾讯混元团队开发的领先多模态图像生成模型,其统一自回归框架实现了文本到图像的高质量生成,性能媲美甚至超越了许多闭源模型。本文将详细介绍如何在学术论文和技术报告中规范引用HunyuanImage-3.0,包括标准引用格式、技术细节描述、评估指标引用及开源协议说明。

标准引用格式

BibTeX引用模板

HunyuanImage-3.0的官方技术报告已发布于arXiv平台,标准引用格式如下:

@article{cao2025hunyuanimage,
  title={HunyuanImage 3.0 Technical Report},
  author={Cao, Siyu and Chen, Hangting and Chen, Peng and Cheng, Yiji and Cui, Yutao and Deng, Xinchi and Dong, Ying and Gong, Kipper and Gu, Tianpeng and Gu, Xiusen and others},
  journal={arXiv preprint arXiv:2509.23951},
  year={2025}
}

该引用信息源自项目官方文档README.md的"📚 Citation"章节,确保了引用的权威性和准确性。

文本引用示例

在正文中首次提及模型时,建议使用完整引用:

腾讯混元团队提出的HunyuanImage-3.0模型(Cao et al., 2025)采用统一多模态自回归框架,实现了文本到图像的高质量生成。

后续可简化为:

实验结果表明,HunyuanImage-3.0(Cao et al., 2025)在语义一致性和视觉质量方面均表现优异。

技术细节描述规范

模型架构引用

在描述模型架构时,应准确引用其核心技术特点:

HunyuanImage-3.0采用统一自回归框架(见图1),突破了传统DiT架构的局限,实现了文本与图像模态的深度融合。该模型包含64个专家的混合专家(Mixture of Experts, MoE)结构,总参数量达800亿,每token激活130亿参数,是目前最大的开源图像生成MoE模型README.md

HunyuanImage-3.0架构

图1: HunyuanImage-3.0统一多模态架构(来源:assets/framework.png

性能指标引用

引用模型性能时,应明确说明评估方法和数据集:

根据SSAE(Structured Semantic Alignment Evaluation)指标评估,HunyuanImage-3.0在3500个关键语义点上的平均图像准确率达到XX%,显著优于对比模型README.md。在GSB(Good/Same/Bad)人类评估中,由100余名专业评估员对1000组提示词生成结果进行比较,HunyuanImage-3.0获得了XX%的"Good"评级(见图2)。

GSB人类评估结果

图2: HunyuanImage-3.0与对比模型的GSB人类评估结果(来源:assets/gsb.png

实验方法描述规范

环境配置引用

在描述实验环境时,应引用官方推荐配置:

实验基于HunyuanImage-3.0官方推荐配置进行,包括Python 3.12+、PyTorch 2.7.1和CUDA 12.8,硬件环境为4×80GB NVIDIA GPUREADME.md。模型权重通过官方仓库获取,总大小约170GB,采用FlashAttention和FlashInfer优化推理速度。

代码示例引用

如需展示使用HunyuanImage-3.0的代码,应遵循官方示例格式:

from transformers import AutoModelForCausalLM

model_id = "./HunyuanImage-3"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
    device_map="auto",
    moe_impl="flashinfer"
)
model.load_tokenizer(model_id)

prompt = "A brown and white dog is running on the grass"
image = model.generate_image(prompt=prompt, stream=True)
image.save("result.png")

上述代码片段基于官方Transformers快速启动示例修改,使用FlashAttention和FlashInfer优化实现高效推理README.md

开源协议与伦理规范

开源协议说明

HunyuanImage-3.0采用"tencent-hunyuan-community"开源协议,引用时应注明:

本研究使用的HunyuanImage-3.0模型遵循tencent-hunyuan-community开源协议,详细条款参见LICENSE文件。

伦理使用声明

引用时应同时声明模型的伦理使用原则:

本研究中HunyuanImage-3.0的使用严格遵循开源协议和伦理准则,未用于生成有害、误导性或侵犯隐私的内容。

引用常见问题解答

Q: 如何引用不同版本的HunyuanImage-3.0?

A: 目前官方发布的版本包括基础版(HunyuanImage-3.0)和指令版(HunyuanImage-3.0-Instruct),引用时应明确版本号及对应的模型卡片信息README.md

Q: 能否直接使用模型生成的图像作为论文插图?

A: 可以,但需在图注中明确标注"图像由HunyuanImage-3.0生成(Cao et al., 2025)",并确保符合开源协议关于衍生作品的规定。

Q: 如何引用HunyuanImage-3.0的特定功能,如提示词重写或多轮交互?

A: 对于特定功能,建议引用官方Prompt指南和技术报告中对应的章节,例如:"HunyuanImage-3.0-Instruct模型支持提示词自动重写功能,通过系统提示(system prompt)实现上下文感知的指令优化README.md。"

总结与展望

正确引用HunyuanImage-3.0不仅能够提升学术论文和技术报告的可信度,也是对开源社区贡献的认可。随着模型的持续迭代(如即将发布的蒸馏版本和VLLM支持),建议研究者关注官方仓库的更新,确保引用信息的时效性。

HunyuanImage-3.0的开源计划还包括图像到图像生成和多轮交互等功能README.md,未来将为多模态研究提供更丰富的工具支持。我们鼓励研究者在使用模型的同时,参与社区贡献,共同推动开源多模态技术的发展。

点赞👍、收藏⭐、关注我们,获取HunyuanImage-3.0的最新学术引用指南和技术进展!

【免费下载链接】HunyuanImage-3.0 HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型 【免费下载链接】HunyuanImage-3.0 项目地址: https://ai.gitcode.com/tencent_hunyuan/HunyuanImage-3.0

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值