HunyuanImage-3.0学术引用指南:论文写作与技术报告规范
引言:为什么规范引用至关重要
在学术研究和技术文档中,正确引用开源模型不仅是对原作者知识产权的尊重,也是确保研究可追溯性和可重复性的关键步骤。HunyuanImage-3.0作为腾讯混元团队开发的领先多模态图像生成模型,其统一自回归框架实现了文本到图像的高质量生成,性能媲美甚至超越了许多闭源模型。本文将详细介绍如何在学术论文和技术报告中规范引用HunyuanImage-3.0,包括标准引用格式、技术细节描述、评估指标引用及开源协议说明。
标准引用格式
BibTeX引用模板
HunyuanImage-3.0的官方技术报告已发布于arXiv平台,标准引用格式如下:
@article{cao2025hunyuanimage,
title={HunyuanImage 3.0 Technical Report},
author={Cao, Siyu and Chen, Hangting and Chen, Peng and Cheng, Yiji and Cui, Yutao and Deng, Xinchi and Dong, Ying and Gong, Kipper and Gu, Tianpeng and Gu, Xiusen and others},
journal={arXiv preprint arXiv:2509.23951},
year={2025}
}
该引用信息源自项目官方文档README.md的"📚 Citation"章节,确保了引用的权威性和准确性。
文本引用示例
在正文中首次提及模型时,建议使用完整引用:
腾讯混元团队提出的HunyuanImage-3.0模型(Cao et al., 2025)采用统一多模态自回归框架,实现了文本到图像的高质量生成。
后续可简化为:
实验结果表明,HunyuanImage-3.0(Cao et al., 2025)在语义一致性和视觉质量方面均表现优异。
技术细节描述规范
模型架构引用
在描述模型架构时,应准确引用其核心技术特点:
HunyuanImage-3.0采用统一自回归框架(见图1),突破了传统DiT架构的局限,实现了文本与图像模态的深度融合。该模型包含64个专家的混合专家(Mixture of Experts, MoE)结构,总参数量达800亿,每token激活130亿参数,是目前最大的开源图像生成MoE模型README.md。
图1: HunyuanImage-3.0统一多模态架构(来源:assets/framework.png)
性能指标引用
引用模型性能时,应明确说明评估方法和数据集:
根据SSAE(Structured Semantic Alignment Evaluation)指标评估,HunyuanImage-3.0在3500个关键语义点上的平均图像准确率达到XX%,显著优于对比模型README.md。在GSB(Good/Same/Bad)人类评估中,由100余名专业评估员对1000组提示词生成结果进行比较,HunyuanImage-3.0获得了XX%的"Good"评级(见图2)。
图2: HunyuanImage-3.0与对比模型的GSB人类评估结果(来源:assets/gsb.png)
实验方法描述规范
环境配置引用
在描述实验环境时,应引用官方推荐配置:
实验基于HunyuanImage-3.0官方推荐配置进行,包括Python 3.12+、PyTorch 2.7.1和CUDA 12.8,硬件环境为4×80GB NVIDIA GPUREADME.md。模型权重通过官方仓库获取,总大小约170GB,采用FlashAttention和FlashInfer优化推理速度。
代码示例引用
如需展示使用HunyuanImage-3.0的代码,应遵循官方示例格式:
from transformers import AutoModelForCausalLM
model_id = "./HunyuanImage-3"
model = AutoModelForCausalLM.from_pretrained(
model_id,
attn_implementation="flash_attention_2",
trust_remote_code=True,
device_map="auto",
moe_impl="flashinfer"
)
model.load_tokenizer(model_id)
prompt = "A brown and white dog is running on the grass"
image = model.generate_image(prompt=prompt, stream=True)
image.save("result.png")
上述代码片段基于官方Transformers快速启动示例修改,使用FlashAttention和FlashInfer优化实现高效推理README.md。
开源协议与伦理规范
开源协议说明
HunyuanImage-3.0采用"tencent-hunyuan-community"开源协议,引用时应注明:
本研究使用的HunyuanImage-3.0模型遵循tencent-hunyuan-community开源协议,详细条款参见LICENSE文件。
伦理使用声明
引用时应同时声明模型的伦理使用原则:
本研究中HunyuanImage-3.0的使用严格遵循开源协议和伦理准则,未用于生成有害、误导性或侵犯隐私的内容。
引用常见问题解答
Q: 如何引用不同版本的HunyuanImage-3.0?
A: 目前官方发布的版本包括基础版(HunyuanImage-3.0)和指令版(HunyuanImage-3.0-Instruct),引用时应明确版本号及对应的模型卡片信息README.md。
Q: 能否直接使用模型生成的图像作为论文插图?
A: 可以,但需在图注中明确标注"图像由HunyuanImage-3.0生成(Cao et al., 2025)",并确保符合开源协议关于衍生作品的规定。
Q: 如何引用HunyuanImage-3.0的特定功能,如提示词重写或多轮交互?
A: 对于特定功能,建议引用官方Prompt指南和技术报告中对应的章节,例如:"HunyuanImage-3.0-Instruct模型支持提示词自动重写功能,通过系统提示(system prompt)实现上下文感知的指令优化README.md。"
总结与展望
正确引用HunyuanImage-3.0不仅能够提升学术论文和技术报告的可信度,也是对开源社区贡献的认可。随着模型的持续迭代(如即将发布的蒸馏版本和VLLM支持),建议研究者关注官方仓库的更新,确保引用信息的时效性。
HunyuanImage-3.0的开源计划还包括图像到图像生成和多轮交互等功能README.md,未来将为多模态研究提供更丰富的工具支持。我们鼓励研究者在使用模型的同时,参与社区贡献,共同推动开源多模态技术的发展。
点赞👍、收藏⭐、关注我们,获取HunyuanImage-3.0的最新学术引用指南和技术进展!
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考