Amazon SageMaker 与 MLflow 集成项目教程
1. 项目介绍
本项目展示了如何将 MLflow 部署在 AWS Fargate 上,并将其与 Amazon SageMaker 结合使用,以管理机器学习生命周期。通过本项目,您可以使用 Amazon SageMaker 开发、训练、调优和部署基于 Scikit-Learn 的机器学习模型(如随机森林模型),并使用 MLflow 跟踪实验运行和模型。
主要功能
- MLflow 跟踪服务器:在 AWS Fargate 上托管一个无服务器的 MLflow 服务器,使用 S3 作为 artifact 存储,RDS 作为后端存储。
- 实验跟踪:使用 MLflow 跟踪在 SageMaker 上运行的实验。
- 模型注册:将 SageMaker 中训练的模型注册到 MLflow 模型注册中心。
- 模型部署:将 MLflow 模型部署到 SageMaker 端点。
2. 项目快速启动
前提条件
在开始之前,请确保您已满足以下条件:
- 拥有一个 AWS 账户。
- 已安装并配置 AWS CDK。
- 已安装 Docker,用于构建和推送 MLflow 容器镜像到 ECR。
- 已克隆本项目到您的本地环境。
部署步骤
-
安装 AWS CDK
npm install -g aws-cdk@2.51.1
-
创建虚拟环境并安装依赖
python3 -m venv .venv source .venv/bin/activate pip3 install -r requirements.txt
-
部署 CDK 堆栈
ACCOUNT_ID=$(aws sts get-caller-identity --query Account | tr -d '"') AWS_REGION=$(aws configure get region) cdk bootstrap aws://$ACCOUNT_ID/$AWS_REGION cdk deploy --parameters ProjectName=mlflow --require-approval never
-
访问 MLflow UI 部署完成后,您可以使用堆栈输出中的负载均衡器 URI 访问 MLflow UI。
3. 应用案例和最佳实践
应用案例
- 多租户环境:在多租户环境中,使用 MLflow 跟踪服务器可以集中管理实验和模型,促进团队协作。
- 模型版本控制:通过 MLflow 模型注册中心,可以轻松管理模型的版本和阶段,确保模型的可追溯性和可重复性。
最佳实践
- 安全配置:建议在 VPC 私有子网中部署内部负载均衡器,以提高安全性。
- 权限管理:尽管开源版本的 MLflow 不提供用户访问控制,但可以通过 AWS IAM 策略来限制对 MLflow 服务器的访问。
4. 典型生态项目
相关项目
- Amazon SageMaker:用于开发、训练和部署机器学习模型的全托管服务。
- MLflow:一个开源平台,用于管理机器学习生命周期,包括实验、可重复性、部署和中央模型注册。
- AWS Fargate:无服务器计算引擎,用于运行容器化应用程序。
通过这些项目的集成,您可以构建一个完整的机器学习生命周期管理解决方案,从实验到生产部署,全程跟踪和管理您的模型。