Amazon SageMaker 与 MLflow 集成项目教程

Amazon SageMaker 与 MLflow 集成项目教程

amazon-sagemaker-mlflow-fargate Managing your machine learning lifecycle with MLflow and Amazon SageMaker amazon-sagemaker-mlflow-fargate 项目地址: https://gitcode.com/gh_mirrors/am/amazon-sagemaker-mlflow-fargate

1. 项目介绍

本项目展示了如何将 MLflow 部署在 AWS Fargate 上,并将其与 Amazon SageMaker 结合使用,以管理机器学习生命周期。通过本项目,您可以使用 Amazon SageMaker 开发、训练、调优和部署基于 Scikit-Learn 的机器学习模型(如随机森林模型),并使用 MLflow 跟踪实验运行和模型。

主要功能

  • MLflow 跟踪服务器:在 AWS Fargate 上托管一个无服务器的 MLflow 服务器,使用 S3 作为 artifact 存储,RDS 作为后端存储。
  • 实验跟踪:使用 MLflow 跟踪在 SageMaker 上运行的实验。
  • 模型注册:将 SageMaker 中训练的模型注册到 MLflow 模型注册中心。
  • 模型部署:将 MLflow 模型部署到 SageMaker 端点。

2. 项目快速启动

前提条件

在开始之前,请确保您已满足以下条件:

  • 拥有一个 AWS 账户。
  • 已安装并配置 AWS CDK。
  • 已安装 Docker,用于构建和推送 MLflow 容器镜像到 ECR。
  • 已克隆本项目到您的本地环境。

部署步骤

  1. 安装 AWS CDK

    npm install -g aws-cdk@2.51.1
    
  2. 创建虚拟环境并安装依赖

    python3 -m venv .venv
    source .venv/bin/activate
    pip3 install -r requirements.txt
    
  3. 部署 CDK 堆栈

    ACCOUNT_ID=$(aws sts get-caller-identity --query Account | tr -d '"')
    AWS_REGION=$(aws configure get region)
    cdk bootstrap aws://$ACCOUNT_ID/$AWS_REGION
    cdk deploy --parameters ProjectName=mlflow --require-approval never
    
  4. 访问 MLflow UI 部署完成后,您可以使用堆栈输出中的负载均衡器 URI 访问 MLflow UI。

3. 应用案例和最佳实践

应用案例

  • 多租户环境:在多租户环境中,使用 MLflow 跟踪服务器可以集中管理实验和模型,促进团队协作。
  • 模型版本控制:通过 MLflow 模型注册中心,可以轻松管理模型的版本和阶段,确保模型的可追溯性和可重复性。

最佳实践

  • 安全配置:建议在 VPC 私有子网中部署内部负载均衡器,以提高安全性。
  • 权限管理:尽管开源版本的 MLflow 不提供用户访问控制,但可以通过 AWS IAM 策略来限制对 MLflow 服务器的访问。

4. 典型生态项目

相关项目

  • Amazon SageMaker:用于开发、训练和部署机器学习模型的全托管服务。
  • MLflow:一个开源平台,用于管理机器学习生命周期,包括实验、可重复性、部署和中央模型注册。
  • AWS Fargate:无服务器计算引擎,用于运行容器化应用程序。

通过这些项目的集成,您可以构建一个完整的机器学习生命周期管理解决方案,从实验到生产部署,全程跟踪和管理您的模型。

amazon-sagemaker-mlflow-fargate Managing your machine learning lifecycle with MLflow and Amazon SageMaker amazon-sagemaker-mlflow-fargate 项目地址: https://gitcode.com/gh_mirrors/am/amazon-sagemaker-mlflow-fargate

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宗嫣惠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值