Apache Juneau 项目教程

Apache Juneau 项目教程

juneauApache Juneau项目地址:https://gitcode.com/gh_mirrors/jun/juneau

1. 项目的目录结构及介绍

Apache Juneau 是一个用于构建 RESTful 服务的开源框架。项目的目录结构清晰,便于理解和使用。以下是主要的目录结构及其介绍:

juneau/
├── juneau-core/
│   ├── juneau-marshall/
│   ├── juneau-dto/
│   └── juneau-config/
├── juneau-rest/
│   ├── juneau-rest-server/
│   └── juneau-rest-client/
├── juneau-microservice/
│   ├── juneau-microservice-server/
│   └── juneau-microservice-client/
├── juneau-doc/
├── juneau-examples/
└── juneau-parent/
  • juneau-core: 核心模块,包含序列化和反序列化功能。
    • juneau-marshall: 提供各种数据格式的序列化支持。
    • juneau-dto: 数据传输对象的定义。
    • juneau-config: 配置管理功能。
  • juneau-rest: RESTful 服务相关模块。
    • juneau-rest-server: 用于构建 RESTful 服务器。
    • juneau-rest-client: 用于构建 RESTful 客户端。
  • juneau-microservice: 微服务相关模块。
    • juneau-microservice-server: 微服务服务器实现。
    • juneau-microservice-client: 微服务客户端实现。
  • juneau-doc: 项目文档。
  • juneau-examples: 示例代码。
  • juneau-parent: 父模块,管理依赖和插件。

2. 项目的启动文件介绍

在 Apache Juneau 项目中,启动文件通常位于 juneau-rest-serverjuneau-microservice-server 模块中。以下是一个典型的启动文件示例:

package org.apache.juneau.rest.sample;

import org.apache.juneau.rest.annotation.*;
import org.apache.juneau.rest.servlet.*;

@RestResource(
    path="/sample",
    title="Sample REST Service",
    description="A simple REST service built using Apache Juneau"
)
public class SampleRest extends BasicRestServlet {

    @RestMethod(name="GET", path="/hello")
    public String sayHello() {
        return "Hello, World!";
    }
}
  • @RestResource: 定义 REST 服务的根路径、标题和描述。
  • BasicRestServlet: 继承自 BasicRestServlet,提供基本的 REST 服务功能。
  • @RestMethod: 定义具体的 REST 方法,如 GET、POST 等。

3. 项目的配置文件介绍

Apache Juneau 项目的配置文件通常位于 src/main/resources 目录下。以下是一个典型的配置文件示例:

# juneau-config.properties
juneau.rest.title=Sample REST Service
juneau.rest.description=A simple REST service built using Apache Juneau
juneau.rest.path=/sample
juneau.rest.port=8080
  • juneau.rest.title: 定义 REST 服务的标题。
  • juneau.rest.description: 定义 REST 服务的描述。
  • juneau.rest.path: 定义 REST 服务的根路径。
  • juneau.rest.port: 定义 REST 服务的端口号。

以上是 Apache Juneau 项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用 Apache Juneau。

juneauApache Juneau项目地址:https://gitcode.com/gh_mirrors/jun/juneau

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邵冠敬Robin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值