PGSR: 计划基于高斯散点的高效和高保真表面重建

PGSR: 计划基于高斯散点的高效和高保真表面重建

1. 项目介绍

PGSR(Planar-based Gaussian Splatting Reconstruction)是一个用于从多视角RGB图像中进行高效和高保真表面重建的开源项目。该技术不需要任何几何先验(如预训练模型的深度或法线),通过基于平面的高斯散点表示,实现对物体表面的精确重构。

2. 项目快速启动

环境准备

首先,确保安装了以下环境:

  • Python 3.8
  • Conda
  • Git

克隆项目

使用Git克隆项目仓库:

git clone git@github.com:zju3dv/PGSR.git
cd PGSR

创建虚拟环境并安装依赖

创建并激活虚拟环境,安装必要的依赖:

conda create -n pgsr python=3.8
conda activate pgsr
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
pip install submodules/diff-plane-rasterization
pip install submodules/simple-knn

数据预处理

请从以下链接下载预处理后的数据集:

按照以下目录结构组织数据:

data/
├── dtu_dataset/
│   ├── dtu/
│   │   ├── scan24/
│   │   │   ├── images/
│   │   │   ├── mask/
│   │   │   ├── sparse/
│   │   │   ├── cameras_sphere.npz
│   │   │   └── cameras.npz
│   ├── dtu_eval/
│   │   ├── Points/
│   │   │   └── stl/
│   │   └── ObsMask/
├── tnt_dataset/
│   ├── tnt/
│   │   ├── Ignatius/
│   │   │   ├── images_raw/
│   │   │   ├── Ignatius_COLMAP_SfM.log
│   │   │   ├── Ignatius_trans.txt
│   │   │   ├── Ignatius.json
│   │   │   ├── Ignatius_mapping_reference.txt
│   │   │   └── Ignatius.ply
└── MipNeRF360/
    ├── bicycle/
    └── ...

训练与评估

根据具体数据集,运行相应的预处理、训练和评估脚本。以下是DTU数据集的示例:

python scripts/run_dtu.py

3. 应用案例和最佳实践

  • 调整参数:根据实际数据集,调整阈值、最大深度、体素大小等参数,以获得最佳性能。
  • 降采样:对于弱纹理场景,可以通过降采样图像来加速训练速度。
  • 深度过滤:对于包含浮点或不充分视角的场景,启用深度过滤功能可以提高重建质量。

4. 典型生态项目

目前,PGSR基于以下开源项目构建:

  • 3DGS
  • AbsGau
  • GOF
  • Neuralangelo scripts
  • DTUeval-python
  • TanksAndTemples

以上是PGSR项目的概述、快速启动指南、应用案例以及相关生态项目介绍。希望这对您使用和贡献该项目有所帮助。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值