GTCRN:轻量级语音增强模型实战指南
项目地址:https://gitcode.com/gh_mirrors/gt/gtcrn
项目介绍
GTCRN(Grouped Temporal Convolutional Recurrent Network)是ICASSP2024论文提出的超低计算资源需求的语音增强模型。此项目提供官方实现,仅需大约23.7K参数,展示了在保持高性能的同时,如何极大降低模型复杂度。GTCRN适用于噪音消除,能在DNS3和VCTK-DEMAND数据集上训练得到的预训练模型,其推理过程高效,特别是在流式处理方面,在特定CPU上的实时因子(RTF)达到了约0.07。
项目快速启动
安装依赖
首先,确保你的环境已安装Python,并通过以下命令安装必要的库:
pip install -r requirements.txt
下载预训练模型
从checkpoints
文件夹下载预训练模型,假设模型名为gtcrn_dns3.pth
,然后你可以使用以下代码进行快速测试:
import torch
from gtcrn.infer import enhance_audio
# 假设audio_path为你的待处理音频路径
audio_path = 'path_to_your_noisy_audio.wav'
# 加载预训练模型
model = torch.load('path_to_gtcrn_dns3.pth')
# 进行音频增强
clean_audio = enhance_audio(audio_path, model)
音频处理
处理完成后,clean_audio
将包含降噪后的音频数据,你可以进一步保存或播放该音频。
应用案例与最佳实践
在实际应用中,GTCRN可以无缝集成到各种语音系统中,如智能音箱、语音识别前端等,以提高语音信号质量。最佳实践中,建议对输入音频进行适当的预处理(例如,去噪前的简单滤波),并利用模型的流式处理能力,实现实时的语音增强。
典型生态项目
- SEtrain: 提供基于深度神经网络(DNN)的语音增强训练代码模板。
- TRT-SE: 展示如何将语音增强模型转化为流式处理形式,并通过ONNX或TensorRT部署,适合于实际产品化应用。
GTCRN因其极低的资源需求,成为了轻量化应用场景中的优选方案,不仅可以用于上述工具和框架中,也鼓励开发者探索更多创新的集成方式,提升用户体验。
此指导文档旨在帮助开发者快速上手GTCRN项目,通过实践理解其在语音增强领域的潜力。深入学习项目细节和调整模型至特定场景,将会解锁更广泛的应用可能。