高效图像检索:扩散检索的升级版
diffusion Efficient Diffusion for Image Retrieval 项目地址: https://gitcode.com/gh_mirrors/dif/diffusion
项目介绍
本项目是基于diffusion-retrieval的改进版本,旨在提供更快速、更高效的图像检索解决方案。项目灵感来源于AAAI 2019的一篇论文,该论文提出了一种通过将扩散过程解耦为在线和离线处理来提高图像检索效率的方法。通过将随机游走过程全部移至离线阶段,本项目显著提升了在线搜索的速度,同时通过应用晚期截断策略,相较于早期截断,进一步提高了检索性能。
项目技术分析
本项目的技术核心在于将扩散过程分为在线和离线两个阶段。离线阶段处理所有随机游走过程,生成预计算的索引,而在线阶段则利用这些预计算的索引进行快速检索。这种解耦策略不仅减少了在线计算的负担,还通过晚期截断策略优化了图的结构,从而提高了检索的准确性。
项目依赖于Facebook的FAISS库,这是一个高效的相似性搜索和聚类库,能够在大规模数据集上进行快速索引和检索。此外,项目还使用了joblib和tqdm等工具,分别用于并行计算和进度条显示,进一步提升了开发和使用的便利性。
项目及技术应用场景
本项目适用于需要高效图像检索的多种场景,包括但不限于:
- 电子商务:快速检索相似商品图像,提升用户体验。
- 安防监控:快速识别监控视频中的目标对象。
- 医学影像:快速检索相似病例图像,辅助医生诊断。
- 图像搜索引擎:提供高效的图像搜索服务。
项目特点
- 高效性:通过将随机游走过程移至离线阶段,显著提升了在线搜索的速度。
- 准确性:采用晚期截断策略,相较于早期截断,提高了检索的准确性。
- 灵活性:所有参数均可通过
Makefile
进行修改,方便用户根据具体需求进行调整。 - 兼容性:支持CPU和GPU两种计算环境,用户可以根据硬件配置选择合适的计算资源。
- 易用性:提供了详细的安装和运行指南,用户可以轻松上手。
如何使用
-
安装依赖:
- 安装FAISS:
conda install faiss-cpu -c pytorch
- 安装joblib:
conda install joblib
- 安装tqdm:
conda install tqdm
- 安装FAISS:
-
配置参数:
- 所有参数可在
Makefile
中修改,包括数据集、特征类型和截断大小等。
- 所有参数可在
-
运行项目:
- 下载所需文件:
make download
- 转换文件格式:
make mat2npy
- 获取检索结果:
make rank
- 下载所需文件:
更新日志
- 更新了评估协议,修复了之前评估代码中计算第一个真阳性结果精度的问题。
- 提供了一种新的检索方法,使用所有查询同时进行检索,性能更佳。
作者
- Fan Yang:算法设计
- Ryota Hinami:评估器实现
通过以上介绍,相信您已经对本项目有了全面的了解。如果您正在寻找一种高效、准确的图像检索解决方案,不妨尝试一下这个开源项目,它将为您的工作带来显著的效率提升。
diffusion Efficient Diffusion for Image Retrieval 项目地址: https://gitcode.com/gh_mirrors/dif/diffusion