GenSDF 项目使用教程
1. 项目目录结构及介绍
GenSDF 项目的目录结构如下:
gensdf/
├── config/
│ └── // 存放训练和测试的配置文件
├── data/
│ └── // 存放数据文件,格式为 CSV
├── model/
│ ├── gensdf/
│ │ └── model.py
│ ├── deepsdf/
│ │ └── model.py
│ ├── archs/
│ │ ├── encoders/
│ │ └── decoders/
│ └── // 存放自定义模型
├── dataloader/
│ └── // 数据加载器,支持有标签和无标签数据
├── utils/
│ └── // 工具脚本,用于重建和评估
├── environment.yml
├── train.py
├── test.py
└── test_single.py
目录结构介绍
- config/: 存放训练和测试的配置文件,包括训练参数、数据路径等。
- data/: 存放数据文件,通常为 CSV 格式,每个文件对应一个对象。
- model/: 存放模型定义文件,包括
gensdf
和deepsdf
等模型的实现。 - dataloader/: 数据加载器,支持有标签和无标签数据的加载。
- utils/: 工具脚本,用于重建和评估模型。
- environment.yml: 项目依赖的环境配置文件。
- train.py: 训练脚本,用于训练模型。
- test.py: 测试脚本,用于测试多个对象。
- test_single.py: 测试单个对象的脚本。
2. 项目启动文件介绍
train.py
train.py
是用于训练模型的启动文件。可以通过以下命令启动训练:
python train.py -e config/gensdf/semi -b 64 -r last
-e
: 指定配置文件路径。-b
: 指定批量大小。-r
: 指定从上次训练的检查点恢复。
test.py
test.py
是用于测试多个对象的启动文件。可以通过以下命令启动测试:
python test.py -e config/gensdf/semi -r last
-e
: 指定配置文件路径。-r
: 指定从上次训练的检查点恢复。
test_single.py
test_single.py
是用于测试单个对象的启动文件。可以通过以下命令启动测试:
python test_single.py -f data/acronym/Bear/52f9a230c400bddd55330ea4156a425f/sdf_data.csv -o output_dir
-f
: 指定输入点云文件路径。-o
: 指定输出目录。
3. 项目的配置文件介绍
environment.yml
environment.yml
是项目依赖的环境配置文件。可以通过以下命令创建并激活环境:
conda env create -f environment.yml
conda activate sdf
config/
目录
config/
目录下存放了训练和测试的配置文件,包括训练参数、数据路径等。例如:
config/gensdf/semi.json
: 用于半监督学习的配置文件。config/deepsdf/default.json
: 用于 DeepSDF 模型的配置文件。
这些配置文件定义了模型的超参数、数据路径、训练轮数等。用户可以根据需要修改这些配置文件以适应不同的训练需求。
通过以上教程,您可以了解 GenSDF 项目的目录结构、启动文件和配置文件的使用方法。希望这些信息对您有所帮助!