GenSDF 项目使用教程

GenSDF 项目使用教程

gensdf Official code repository for the paper: “GenSDF: Two-Stage Learning of Generalizable Signed Distance Functions” gensdf 项目地址: https://gitcode.com/gh_mirrors/ge/gensdf

1. 项目目录结构及介绍

GenSDF 项目的目录结构如下:

gensdf/
├── config/
│   └── // 存放训练和测试的配置文件
├── data/
│   └── // 存放数据文件,格式为 CSV
├── model/
│   ├── gensdf/
│   │   └── model.py
│   ├── deepsdf/
│   │   └── model.py
│   ├── archs/
│   │   ├── encoders/
│   │   └── decoders/
│   └── // 存放自定义模型
├── dataloader/
│   └── // 数据加载器,支持有标签和无标签数据
├── utils/
│   └── // 工具脚本,用于重建和评估
├── environment.yml
├── train.py
├── test.py
└── test_single.py

目录结构介绍

  • config/: 存放训练和测试的配置文件,包括训练参数、数据路径等。
  • data/: 存放数据文件,通常为 CSV 格式,每个文件对应一个对象。
  • model/: 存放模型定义文件,包括 gensdfdeepsdf 等模型的实现。
  • dataloader/: 数据加载器,支持有标签和无标签数据的加载。
  • utils/: 工具脚本,用于重建和评估模型。
  • environment.yml: 项目依赖的环境配置文件。
  • train.py: 训练脚本,用于训练模型。
  • test.py: 测试脚本,用于测试多个对象。
  • test_single.py: 测试单个对象的脚本。

2. 项目启动文件介绍

train.py

train.py 是用于训练模型的启动文件。可以通过以下命令启动训练:

python train.py -e config/gensdf/semi -b 64 -r last
  • -e: 指定配置文件路径。
  • -b: 指定批量大小。
  • -r: 指定从上次训练的检查点恢复。

test.py

test.py 是用于测试多个对象的启动文件。可以通过以下命令启动测试:

python test.py -e config/gensdf/semi -r last
  • -e: 指定配置文件路径。
  • -r: 指定从上次训练的检查点恢复。

test_single.py

test_single.py 是用于测试单个对象的启动文件。可以通过以下命令启动测试:

python test_single.py -f data/acronym/Bear/52f9a230c400bddd55330ea4156a425f/sdf_data.csv -o output_dir
  • -f: 指定输入点云文件路径。
  • -o: 指定输出目录。

3. 项目的配置文件介绍

environment.yml

environment.yml 是项目依赖的环境配置文件。可以通过以下命令创建并激活环境:

conda env create -f environment.yml
conda activate sdf

config/ 目录

config/ 目录下存放了训练和测试的配置文件,包括训练参数、数据路径等。例如:

  • config/gensdf/semi.json: 用于半监督学习的配置文件。
  • config/deepsdf/default.json: 用于 DeepSDF 模型的配置文件。

这些配置文件定义了模型的超参数、数据路径、训练轮数等。用户可以根据需要修改这些配置文件以适应不同的训练需求。


通过以上教程,您可以了解 GenSDF 项目的目录结构、启动文件和配置文件的使用方法。希望这些信息对您有所帮助!

gensdf Official code repository for the paper: “GenSDF: Two-Stage Learning of Generalizable Signed Distance Functions” gensdf 项目地址: https://gitcode.com/gh_mirrors/ge/gensdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒋闯中Errol

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值