Fast3R项目使用教程

Fast3R项目使用教程

fast3r [CVPR 2025] Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass fast3r 项目地址: https://gitcode.com/gh_mirrors/fa/fast3r

1. 项目目录结构及介绍

Fast3R项目的目录结构如下:

.
├── assets
├── configs
├── demo_examples
├── fast3r
├── notebooks
├── scripts
├── .env.example
├── .gitignore
├── .project-root
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── Dockerfile
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
  • assets/: 存放项目所需的一些资源文件。
  • configs/: 包含了项目的配置文件,用于定义实验参数。
  • demo_examples/: 存放一些示例数据,用于演示项目功能。
  • fast3r/: 核心代码目录,包含了Fast3R模型的实现。
  • notebooks/: Jupyter笔记本文档,用于分析和可视化项目结果。
  • scripts/: 包含了项目运行过程中使用的脚本文件。
  • .env.example: 环境变量配置文件示例。
  • .gitignore: 定义了Git应该忽略的文件和目录。
  • .project-root: 标记项目根目录的文件。
  • CODE_OF_CONDUCT.md: 项目行为准则文件。
  • CONTRIBUTING.md: 如何为项目贡献的指南。
  • Dockerfile: 用于构建项目Docker镜像的文件。
  • LICENSE: 项目许可证文件。
  • README.md: 项目说明文件。
  • requirements.txt: 项目依赖的Python包列表。
  • setup.py: Python包的设置文件。

2. 项目的启动文件介绍

项目的启动文件主要是demo.py,它位于fast3r/viz/目录下。这个文件用于启动一个演示,用户可以通过上传图片或视频来查看3D重建和相机姿态估计的结果。以下是启动演示的基本步骤:

python fast3r/viz/demo.py

运行此命令将自动下载预训练的模型权重和配置文件,并启动一个基于Gradio的界面,用户可以在其中上传数据并进行可视化。

3. 项目的配置文件介绍

项目的配置文件位于configs/目录下。这些文件定义了项目运行时的参数,例如训练过程中的超参数、数据集路径、模型设置等。配置文件使用YAML格式,可以根据需要修改。以下是一个配置文件的示例结构:

# experiment.yaml
trainer:
  max_epochs: 100
  gpus: 8
data:
  train:
    dataset: 'DTU'
    path: './data/DTU'
  val:
    dataset: 'Neural-RGBD'
    path: './data/Neural-RGBD'
model:
  name: 'Fast3R'
  backbone: 'ViT-Large'

在这个例子中,配置文件定义了训练器的最大迭代次数和使用的GPU数量,以及训练和验证数据集的名称和路径,还有模型名称和模型架构。

要使用这些配置文件,你可以在运行项目脚本时指定配置文件路径,例如:

python fast3r/train.py experiment=configs/experiment.yaml

fast3r [CVPR 2025] Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass fast3r 项目地址: https://gitcode.com/gh_mirrors/fa/fast3r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒋闯中Errol

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值