Fast3R项目使用教程
1. 项目目录结构及介绍
Fast3R项目的目录结构如下:
.
├── assets
├── configs
├── demo_examples
├── fast3r
├── notebooks
├── scripts
├── .env.example
├── .gitignore
├── .project-root
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── Dockerfile
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
- assets/: 存放项目所需的一些资源文件。
- configs/: 包含了项目的配置文件,用于定义实验参数。
- demo_examples/: 存放一些示例数据,用于演示项目功能。
- fast3r/: 核心代码目录,包含了Fast3R模型的实现。
- notebooks/: Jupyter笔记本文档,用于分析和可视化项目结果。
- scripts/: 包含了项目运行过程中使用的脚本文件。
- .env.example: 环境变量配置文件示例。
- .gitignore: 定义了Git应该忽略的文件和目录。
- .project-root: 标记项目根目录的文件。
- CODE_OF_CONDUCT.md: 项目行为准则文件。
- CONTRIBUTING.md: 如何为项目贡献的指南。
- Dockerfile: 用于构建项目Docker镜像的文件。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文件。
- requirements.txt: 项目依赖的Python包列表。
- setup.py: Python包的设置文件。
2. 项目的启动文件介绍
项目的启动文件主要是demo.py
,它位于fast3r/viz/
目录下。这个文件用于启动一个演示,用户可以通过上传图片或视频来查看3D重建和相机姿态估计的结果。以下是启动演示的基本步骤:
python fast3r/viz/demo.py
运行此命令将自动下载预训练的模型权重和配置文件,并启动一个基于Gradio的界面,用户可以在其中上传数据并进行可视化。
3. 项目的配置文件介绍
项目的配置文件位于configs/
目录下。这些文件定义了项目运行时的参数,例如训练过程中的超参数、数据集路径、模型设置等。配置文件使用YAML格式,可以根据需要修改。以下是一个配置文件的示例结构:
# experiment.yaml
trainer:
max_epochs: 100
gpus: 8
data:
train:
dataset: 'DTU'
path: './data/DTU'
val:
dataset: 'Neural-RGBD'
path: './data/Neural-RGBD'
model:
name: 'Fast3R'
backbone: 'ViT-Large'
在这个例子中,配置文件定义了训练器的最大迭代次数和使用的GPU数量,以及训练和验证数据集的名称和路径,还有模型名称和模型架构。
要使用这些配置文件,你可以在运行项目脚本时指定配置文件路径,例如:
python fast3r/train.py experiment=configs/experiment.yaml