LibreCUDA 使用教程

LibreCUDA 使用教程

LibreCuda LibreCuda 项目地址: https://gitcode.com/gh_mirrors/li/LibreCuda

1. 项目介绍

LibreCUDA 是一个开源项目,旨在替代 CUDA 驱动 API,使开发者能够在不依赖 NVIDIA 的专有 CUDA 运行时的条件下,通过直接与硬件通信(使用 ioctls 和 NVIDIA 的 MMIO 命令队列结构),在 NVIDIA GPU 上运行 CUDA 代码。

2. 项目快速启动

要使用 LibreCUDA,首先需要克隆项目仓库并链接到 driverapi 库。

git clone --recurse https://github.com/mikex86/LibreCuda.git

然后在你的 CMake 项目中添加 LibreCUDA 作为子目录:

add_subdirectory(LibreCuda)

接着链接到 driverapi 库:

target_link_libraries(YourTarget PRIVATE driverapi)

在代码中包含 LibreCUDA 头文件:

#include <librecuda.h>

以下是一个简单的示例代码,展示如何使用 LibreCUDA 初始化、加载模块、分配内存、执行内核和释放资源:

int main() {
    libreCuInit(0);
    int device_count;
    libreCuDeviceGetCount(&device_count);
    std::cout << "Device count: " << device_count << std::endl;

    LibreCUdevice device;
    libreCuDeviceGet(&device, 0);
    LibreCUcontext ctx;
    libreCuCtxCreate_v2(&ctx, CU_CTX_SCHED_YIELD, device);

    LibreCUmodule module;
    uint8_t *image;
    size_t n_bytes;
    {
        std::ifstream input("write_float.cubin", std::ios::binary);
        std::vector<uint8_t> bytes((std::istreambuf_iterator<char>(input)), (std::istreambuf_iterator<char>()));
        input.close();
        image = new uint8_t[bytes.size()];
        doMemcpy(image, bytes.data(), bytes.size());
        n_bytes = bytes.size();
    }
    libreCuModuleLoadData(&module, image, n_bytes);

    uint32_t num_funcs;
    libreCuModuleGetFunctionCount(&num_funcs, module);
    std::cout << "Num functions: " << num_funcs << std::endl;

    LibreCUFunction *functions = new LibreCUFunction[num_funcs];
    libreCuModuleEnumerateFunctions(functions, num_funcs, module);
    for (size_t i = 0; i < num_funcs; i++) {
        LibreCUFunction func = functions[i];
        const char *func_name;
        libreCuFuncGetName(&func_name, func);
        std::cout << "function \"" << func_name << "\"" << std::endl;
    }
    delete[] functions;

    LibreCUFunction func;
    libreCuModuleGetFunction(&func, module, "write_float");
    LibreCUstream stream;
    libreCuStreamCreate(&stream, 0);

    void *float_dst_va;
    libreCuMemAlloc(&float_dst_va, sizeof(float), true);
    float float_value = 3.1415f;
    void *float_src_va;
    libreCuMemAlloc(&float_src_va, sizeof(float), true);
    *(float *)(float_src_va) = float_value;
    std::cout << "Src value: " << float_value << std::endl;
    std::cout << "Dst value (pre exec): " << *(float *)(float_dst_va) << std::endl;

    void *params[] = {&float_dst_va, &float_src_va};
    libreCuLaunchKernel(func, 1, 1, 1, 1, 1, 1, 0, stream, params, sizeof(params) / sizeof(void *), nullptr);

    libreCuStreamCommence(stream);
    libreCuStreamAwait(stream);
    std::cout << "Dst value (post exec): " << *(float *)(float_dst_va) << std::endl;

    libreCuMemFree(float_dst_va);
    libreCuStreamDestroy(stream);
    libreCuModuleUnload(module);
    libreCuCtxDestroy(ctx);

    return 0;
}

编译并运行上述代码,你将看到设备计数、函数数量以及内核执行前后的值。

3. 应用案例和最佳实践

  • 设备管理:使用 libreCuDeviceGetCountlibreCuDeviceGet 来查询和选择设备。
  • 上下文管理:创建和销毁上下文,使用 libreCuCtxCreate_v2libreCuCtxDestroy
  • 模块管理:加载和卸载模块,使用 libreCuModuleLoadDatalibreCuModuleUnload
  • 内存管理:分配和释放 GPU 内存,使用 libreCuMemAlloclibreCuMemFree
  • 内核执行:启动 CUDA 内核,使用 libreCuLaunchKernel

4. 典型生态项目

目前,LibreCUDA 还处于早期阶段,实现了基本的 CUDA 功能。它在开源社区中可以找到一些潜在的使用场景,尤其是对于那些希望避免使用专有驱动程序的用户。与 LibreCUDA 相似的其他项目包括:

  • ROCm:AMD 的开源 GPU 计算框架。
  • OpenCL:一个开放的、跨平台的并行计算标准,可用于多种类型的处理设备。

LibreCUDA 可以为这些生态系统提供补充,为开发者提供更多的选择和灵活性。

LibreCuda LibreCuda 项目地址: https://gitcode.com/gh_mirrors/li/LibreCuda

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒋闯中Errol

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值