Score-SDE: 通过随机微分方程的得分生成模型

Score-SDE: 通过随机微分方程的得分生成模型

score_sde Official code for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral) score_sde 项目地址: https://gitcode.com/gh_mirrors/sc/score_sde

1. 项目介绍

本项目是基于随机微分方程(Stochastic Differential Equations, SDEs)的得分生成模型(Score-Based Generative Modeling)的开源实现。该模型由杨松(Yang Song)等研究者提出,能够在不同的数据集上生成高质量的样本,并且支持多种条件生成任务。本项目包含了对多种得分模型的重现,如NCSN、NCSNv2、DDPM和DDPM++等,并提供了一个模块化的代码框架,方便扩展新的SDEs、预测器和校正器。

2. 项目快速启动

环境安装

首先,确保您的Python环境已经准备好。然后,安装项目所需的依赖:

pip install -r requirements.txt

数据集准备

项目支持多个数据集,例如CIFAR-10、CelebA等。以下以CIFAR-10为例,说明如何准备数据集:

  1. 下载CIFAR-10数据集。
  2. 计算CIFAR-10的统计数据,并保存为cifar10_stats.npz文件,存放于assets/stats/目录下。

模型训练

训练模型的命令如下:

python main.py --config configs/cifar10_ncsnpp.yaml --mode train --workdir runs/cifar10_ncsnpp

这里,--config指定了配置文件,--mode设置为train表示训练模式,--workdir定义了工作目录。

模型评估

模型评估的命令如下:

python main.py --config configs/cifar10_ncsnpp.yaml --mode eval --workdir runs/cifar10_ncsnpp

在评估模式下,可以计算损失函数、生成样本并评估样本质量,或计算训练集或测试集的对数似然。

3. 应用案例和最佳实践

  • 案例一: 使用NCSN模型生成CIFAR-10图像。
  • 案例二: 使用DDPM++模型对CelebA数据集进行条件生成。

最佳实践:

  • 使用Predictor-Corrector采样方法提高生成样本的质量。
  • 调整SDE模型的超参数,以获得更好的生成效果。

4. 典型生态项目

目前,基于本项目的研究和应用正在逐渐增多。以下是一些典型的生态项目:

  • Score-SDE-PyTorch: 使用PyTorch框架实现的Score-SDE模型。
  • Score-SDE-Applications: 基于Score-SDE模型的实际应用集合。

以上内容为您提供了Score-SDE项目的概述和快速启动指南,以及一些应用案例和生态项目信息,帮助您更好地了解和使用这个强大的生成模型。

score_sde Official code for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral) score_sde 项目地址: https://gitcode.com/gh_mirrors/sc/score_sde

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

管吟敏Dwight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值