Score-SDE: 通过随机微分方程的得分生成模型
1. 项目介绍
本项目是基于随机微分方程(Stochastic Differential Equations, SDEs)的得分生成模型(Score-Based Generative Modeling)的开源实现。该模型由杨松(Yang Song)等研究者提出,能够在不同的数据集上生成高质量的样本,并且支持多种条件生成任务。本项目包含了对多种得分模型的重现,如NCSN、NCSNv2、DDPM和DDPM++等,并提供了一个模块化的代码框架,方便扩展新的SDEs、预测器和校正器。
2. 项目快速启动
环境安装
首先,确保您的Python环境已经准备好。然后,安装项目所需的依赖:
pip install -r requirements.txt
数据集准备
项目支持多个数据集,例如CIFAR-10、CelebA等。以下以CIFAR-10为例,说明如何准备数据集:
- 下载CIFAR-10数据集。
- 计算CIFAR-10的统计数据,并保存为
cifar10_stats.npz
文件,存放于assets/stats/
目录下。
模型训练
训练模型的命令如下:
python main.py --config configs/cifar10_ncsnpp.yaml --mode train --workdir runs/cifar10_ncsnpp
这里,--config
指定了配置文件,--mode
设置为train
表示训练模式,--workdir
定义了工作目录。
模型评估
模型评估的命令如下:
python main.py --config configs/cifar10_ncsnpp.yaml --mode eval --workdir runs/cifar10_ncsnpp
在评估模式下,可以计算损失函数、生成样本并评估样本质量,或计算训练集或测试集的对数似然。
3. 应用案例和最佳实践
- 案例一: 使用NCSN模型生成CIFAR-10图像。
- 案例二: 使用DDPM++模型对CelebA数据集进行条件生成。
最佳实践:
- 使用
Predictor-Corrector
采样方法提高生成样本的质量。 - 调整SDE模型的超参数,以获得更好的生成效果。
4. 典型生态项目
目前,基于本项目的研究和应用正在逐渐增多。以下是一些典型的生态项目:
- Score-SDE-PyTorch: 使用PyTorch框架实现的Score-SDE模型。
- Score-SDE-Applications: 基于Score-SDE模型的实际应用集合。
以上内容为您提供了Score-SDE项目的概述和快速启动指南,以及一些应用案例和生态项目信息,帮助您更好地了解和使用这个强大的生成模型。