BCEmbedding 开源项目安装及使用指南
项目地址:https://gitcode.com/gh_mirrors/bc/BCEmbedding
1. 项目介绍
BCEmbedding是网易有道推出的一款用于检索增强生成模型(Retrieval Augmented Generation Models)的开源工具包。它提供了跨语言语义表示的能力,尤其适用于双语和多语言环境下的嵌入与重排序任务。BCEmbedding的核心优势在于其强大的双语和跨语言特性,以及对于检索增强场景的高度优化。
- 双语和跨语言支持:BCEmbedding能够处理多种语言数据,包括但不限于中文、英文等。
- 高性能语义理解:通过预训练的深度学习模型,BCEmbedding可以捕捉文本之间的深层语义联系,实现高质量的语义检索。
- 无缝对接主流框架:BCEmbedding易于集成至LangChain和LlamaIndex等流行生态系统,简化了开发流程。
- API友好:除了本地部署,还提供了便捷的API服务,使得模型的访问更加简单快捷。
2. 快速启动
安装准备
首先,确保你的环境中已安装Python及相关依赖库。推荐创建一个新的conda环境来避免版本冲突:
conda create --name bce python=3.10 -y
conda activate bce
然后,可以通过以下命令从GitHub克隆项目并安装BCEmbedding:
git clone https://github.com/netease-youdao/BCEmbedding.git
cd BCEmbedding
pip install -v -e .
或者,通过PyPI直接安装最新发布的稳定版:
pip install BCEmbedding==0.1.5
使用示例
假设我们已经准备好了一个列表sentence
,其中包含了多个句子:
from BCEmbedding import EmbeddingModel
# 句子列表
sentences = ['这是一个测试句子', '这句话是为了演示如何使用BCEmbedding']
# 初始化嵌入模型
model = EmbeddingModel(model_name_or_path='maidalun1020/bce-embedding-base_v1')
# 提取嵌入向量
embeddings = model.encode(sentences)
print(embeddings)
对于重排序任务,则可采用RerankerModel:
from BCEmbedding import RerankerModel
# 查询和待检索句对
query = '输入查询'
passages = ['待检索单词', '另一个检索示例']
sentence_pairs = [[query, p] for p in passages]
# 初始化重排序模型
reranker_model = RerankerModel(model_name_or_path='maidalun1020/bce-reranker-base_v1')
scores = reranker_model.predict(sentence_pairs)
# 打印相关度分数
for score in scores:
print(score)
3. 应用案例和最佳实践
实践建议
通常,当使用嵌入模型时,推荐先获取大量候选片段,例如前50至100个结果。随后利用重排序模型bce-reranker-base_v1
对这些片段进行精确排名,最终挑选出前5至10个最为相关的片段以提高检索精度。
典型应用场景
- 文档检索:结合BCEmbedding的嵌入功能,在海量文档中搜索特定主题的段落。
- 问答系统:利用BCEmbedding的高精度语义匹配能力改进智能问答系统的准确性。
- 聊天机器人:将BCEmbedding整合至聊天机器人的对话管理流程中,提升对话质量。
4. 典型生态项目
BCEmbedding不仅限于独立使用,还可以与一系列外部项目和生态系统紧密结合:
- LangChain: LangChain社区中的用户可以轻松地将BCEmbedding集成至自己的应用程序中,优化自然语言处理(NLP)的性能。
- QAnything: 一个基于BCEmbedding构建的检索增强式问答系统,展示了模型在现实世界问答任务中的潜力。
- ChatPDF: 结合BCEmbedding的ChatPDF旨在解决PDF文档阅读过程中的互动难题,提供精准的文档内问答体验。
以上仅是一些典型的示例,实际上,BCEmbedding的应用范围远比这更为广泛,涵盖了从学术研究到企业级解决方案的各种领域。
BCEmbedding 项目地址: https://gitcode.com/gh_mirrors/bc/BCEmbedding