rcATT:项目的核心功能/场景
rcATT 项目地址: https://gitcode.com/gh_mirrors/rc/rcATT
rcATT 是一款基于 Python 的工具,用于从网络安全威胁报告中预测并分类 ATT&CK 框架中的战术和技术。
项目介绍
rcATT 是一个专为网络安全领域设计的人工智能工具。它能够自动分析网络安全威胁报告,识别并分类出其中的战术和技术,帮助安全分析人员快速理解和响应网络威胁。该工具支持命令行和图形界面两种操作方式,为用户提供灵活的使用选项。
项目技术分析
rcATT 使用了多种先进的自然语言处理和机器学习技术,包括但不限于文本分类、实体识别和模型训练。以下是项目技术分析的关键点:
- 文本预处理:使用 NLTK 工具包进行文本清洗和分词,包括停用词去除、词性标注等。
- 模型训练:基于 scikit-learn 库,使用机器学习模型进行训练,能够从历史数据中学习并改进分类效果。
- 结果可视化:通过图形界面直观展示分类结果,帮助用户快速理解预测结果。
- 反馈机制:允许用户对预测结果进行修正,并将修正后的数据反馈到训练集中,从而持续优化模型。
项目及技术应用场景
rcATT 可应用于多种网络安全场景,主要包括:
- 威胁情报分析:在威胁情报报告中快速识别出攻击者的战术和技术,为防御策略提供数据支持。
- 安全运营:在安全运营中心(SOC)中,自动分析安全事件报告,提高响应速度和效率。
- 安全培训:作为教学工具,帮助安全专业人员学习并理解 ATT&CK 框架中的战术和技术。
项目特点
rcATT 具有以下显著特点:
- 跨平台支持:支持 Windows、Linux 和 macOS 等多种操作系统。
- 灵活性:提供命令行和图形界面两种操作方式,满足不同用户的需求。
- 可扩展性:用户可以轻松地扩展数据集,重新训练模型,以适应不断变化的网络安全环境。
- 互动性:用户可以通过反馈机制对预测结果进行修正,使模型更加精准。
以下是关于 rcATT 的详细使用说明:
安装
rcATT 需要以下依赖库:
- Python 3.5 或更高版本
- joblib
- pandas
- numpy
- stix2
- scikit-learn
- nltk 及其子包:punkt、stopwords、wordnet
- flask(仅图形界面版本)
- colorama(仅命令行版本)
用户可以通过 Python 环境安装上述依赖,并下载 rcATT 工具,使用 Python 运行。
使用方法
命令行界面
- 预测战术和技术:将报告保存为文本文件,使用命令
python -p -i [报告文件路径]
进行预测。 - 修正预测结果:使用命令
python app.py -f [战术和技术列表] -i [rcATT 生成的 .json 文件] -o [输出 .json 文件]
进行结果修正。 - 保存反馈和结果:使用命令
python app.py -a -i [.json 文件]
将反馈和结果保存到训练集。 - 重新训练模型:使用命令
python app.py -t
重新训练分类器。
图形界面
- 预测战术和技术:在文本区域输入报告内容,点击“预测”按钮。
- 修正预测结果:点击“修正结果”按钮进行修正。
- 保存结果用于训练:点击“保存结果用于训练”按钮。
- 重新训练模型:点击“🔄”按钮重新训练模型。
- 导出结果为 STIX 格式:点击“导出结果”按钮并填写表单。
rcATT 作为一个功能强大的网络安全工具,不仅能够提高网络安全工作的效率,还能够帮助用户更好地理解网络安全威胁,值得推荐给每一个网络安全专业人士使用。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考