RoboSat建筑训练项目教程

RoboSat建筑训练项目教程

robosat_buildings_training手把手教你如何使用 mapbox/robosat 工具,基于深度学习训练,从常规的遥感影像瓦片地图服务中自动提取建筑物。项目地址:https://gitcode.com/gh_mirrors/ro/robosat_buildings_training

1. 项目的目录结构及介绍

目录结构

robosat_buildings_training/
├── config/
│   ├── default.toml
│   └── ...
├── data/
│   ├── images/
│   └── labels/
├── models/
│   └── ...
├── notebooks/
│   └── ...
├── scripts/
│   ├── train.py
│   └── ...
├── README.md
└── ...

目录介绍

  • config/: 存放项目的配置文件,如 default.toml
  • data/: 存放训练数据,包括图像和标签。
  • models/: 存放训练好的模型文件。
  • notebooks/: 存放Jupyter笔记本,用于数据分析和可视化。
  • scripts/: 存放主要的脚本文件,如训练脚本 train.py
  • README.md: 项目说明文档。

2. 项目的启动文件介绍

启动文件

  • scripts/train.py: 这是项目的主要启动文件,用于启动训练过程。

使用方法

python scripts/train.py --config config/default.toml

功能介绍

  • train.py: 该脚本负责加载配置、初始化模型、读取数据、进行训练并保存模型。

3. 项目的配置文件介绍

配置文件

  • config/default.toml: 这是项目的默认配置文件,包含了训练所需的各种参数。

配置项介绍

[data]
train_path = "data/images"
label_path = "data/labels"

[model]
input_channels = 3
num_classes = 2

[training]
batch_size = 8
epochs = 50
learning_rate = 0.001

配置项说明

  • data: 数据路径配置,包括训练图像路径和标签路径。
  • model: 模型配置,包括输入通道数和类别数。
  • training: 训练配置,包括批次大小、训练轮数和学习率。

通过以上内容,您可以了解并使用RoboSat建筑训练项目进行模型训练和相关配置。

robosat_buildings_training手把手教你如何使用 mapbox/robosat 工具,基于深度学习训练,从常规的遥感影像瓦片地图服务中自动提取建筑物。项目地址:https://gitcode.com/gh_mirrors/ro/robosat_buildings_training

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咎晓嘉Fenton

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值