RoboSat建筑训练项目教程
1. 项目的目录结构及介绍
目录结构
robosat_buildings_training/
├── config/
│ ├── default.toml
│ └── ...
├── data/
│ ├── images/
│ └── labels/
├── models/
│ └── ...
├── notebooks/
│ └── ...
├── scripts/
│ ├── train.py
│ └── ...
├── README.md
└── ...
目录介绍
- config/: 存放项目的配置文件,如
default.toml
。 - data/: 存放训练数据,包括图像和标签。
- models/: 存放训练好的模型文件。
- notebooks/: 存放Jupyter笔记本,用于数据分析和可视化。
- scripts/: 存放主要的脚本文件,如训练脚本
train.py
。 - README.md: 项目说明文档。
2. 项目的启动文件介绍
启动文件
- scripts/train.py: 这是项目的主要启动文件,用于启动训练过程。
使用方法
python scripts/train.py --config config/default.toml
功能介绍
- train.py: 该脚本负责加载配置、初始化模型、读取数据、进行训练并保存模型。
3. 项目的配置文件介绍
配置文件
- config/default.toml: 这是项目的默认配置文件,包含了训练所需的各种参数。
配置项介绍
[data]
train_path = "data/images"
label_path = "data/labels"
[model]
input_channels = 3
num_classes = 2
[training]
batch_size = 8
epochs = 50
learning_rate = 0.001
配置项说明
- data: 数据路径配置,包括训练图像路径和标签路径。
- model: 模型配置,包括输入通道数和类别数。
- training: 训练配置,包括批次大小、训练轮数和学习率。
通过以上内容,您可以了解并使用RoboSat建筑训练项目进行模型训练和相关配置。