CAMEL项目中的任务管理模块深度解析

CAMEL项目中的任务管理模块深度解析

camel 🐫 CAMEL: Communicative Agents for “Mind” Exploration of Large Language Model Society (NeruIPS'2023) https://www.camel-ai.org camel 项目地址: https://gitcode.com/gh_mirrors/ca/camel

前言

在多智能体协作系统中,任务管理是核心功能之一。CAMEL项目提供了一个强大的任务管理模块,能够帮助开发者高效地构建和管理复杂的任务流程。本文将深入解析CAMEL中的任务模块设计原理和使用方法。

任务(Task)基础概念

在CAMEL框架中,任务(Task)代表可以被代理(Agent)执行和解决的具体工作项。与简单的提示(Prompt)相比,任务是一个更高层次的概念抽象,具有以下关键特性:

  1. 协作性:一个任务可能需要多个智能体协作完成
  2. 可分解性:复杂任务可以被分解为多个子任务
  3. 演化性:任务可以根据执行情况动态演化

任务属性详解

每个任务对象包含以下核心属性:

| 属性名 | 类型 | 说明 | |--------|------|------| | content | 字符串 | 任务内容的清晰描述 | | id | 字符串 | 任务的唯一标识符 | | state | 枚举 | 任务状态(OPEN/RUNNING/DONE/FAILED/DELETED) | | parent | Task对象 | 父任务引用 | | subtasks | Task列表 | 子任务列表 | | result | 字符串 | 任务执行结果 |

任务操作API

CAMEL提供了丰富的任务操作方法:

  1. 基础操作

    • from_message/to_message:与消息系统的互转
    • reset:重置任务状态
    • update_result:更新任务结果并标记为完成
  2. 结构操作

    • add_subtask/remove_subtask:增删子任务
    • get_running_task:获取运行中的任务
  3. 转换操作

    • to_string:转为可读字符串
    • get_result:获取结果字符串
  4. 核心功能

    • decompose:任务分解
    • compose:结果组合
    • get_depth:获取任务层级深度

实战应用

基础任务创建

from camel.tasks import Task

# 创建简单任务
task = Task(
    content="小明每小时挣12美元做家教。昨天他只做了51分钟。他挣了多少钱?",
    id="0",
)

层次化任务结构

# 创建根任务
root_task = Task(content="准备一顿饭", id="0")

# 创建一级子任务
sub_task_1 = Task(content="购买食材", id="1")
sub_task_2 = Task(content="烹饪食物", id="2")
sub_task_3 = Task(content="摆桌子", id="3")

# 创建二级子任务
sub_task_2_1 = Task(content="切蔬菜", id="2.1")
sub_task_2_2 = Task(content="煮米饭", id="2.2")

# 构建层次结构
root_task.add_subtask(sub_task_1)
root_task.add_subtask(sub_task_2)
root_task.add_subtask(sub_task_3)
sub_task_2.add_subtask(sub_task_2_1)
sub_task_2.add_subtask(sub_task_2_2)

输出结果将展示清晰的层次结构:

任务0:准备一顿饭
任务1:购买食材
任务2:烹饪食物
    任务2.1:切蔬菜
    任务2.2:煮米饭
任务3:摆桌子

任务分解与组合

任务分解是CAMEL的核心能力之一,它允许将复杂问题拆解为可管理的子任务:

from camel.agents import ChatAgent
from camel.messages import BaseMessage

# 初始化智能体
sys_msg = BaseMessage.make_assistant_message(
    role_name="助手", content="你是一个有帮助的助手"
)
agent = ChatAgent(system_message=sys_msg)

# 分解任务
original_task = Task(
    content="小明每小时挣12美元做家教。昨天他只做了51分钟。他挣了多少钱?",
    id="0",
)
sub_tasks = original_task.decompose(agent=agent)

# 输出分解结果
for t in sub_tasks:
    print(t.to_string())

分解结果示例:

任务0.0:将51分钟转换为小时
任务0.1:按每小时12美元的费率计算转换后小时的收入
任务0.2:基于计算结果提供最终收入金额

任务组合则可以将子任务结果合并:

original_task.compose(agent=agent)
print(original_task.result)

任务管理器(TaskManager)

TaskManager提供了更高级的任务管理功能:

  1. 拓扑排序:对任务列表进行拓扑排序
  2. 依赖设置:设置任务间的串行/并行关系
  3. 任务演化:基于当前任务生成新的演进任务

任务演化示例

from camel.tasks import TaskManager

task_manager = TaskManager(original_task)
evolved_task = task_manager.evolve(original_task, agent=agent)
print(evolved_task.to_string())

演化结果可能如下:

任务0.0:小明每小时挣12美元做家教。昨天她做了1小时45分钟。如果她还因优质服务获得了5美元奖金,她那天总共挣了多少钱?

设计理念与最佳实践

CAMEL的任务模块设计体现了几个关键理念:

  1. 自顶向下分解:复杂问题可以逐层分解为简单子问题
  2. 自底向上组合:子问题解决后可以组合为完整解决方案
  3. 动态演化:任务可以根据执行情况动态调整

最佳实践建议

  1. 为每个任务设置清晰、具体的content描述
  2. 合理设计任务ID体系以反映层次关系
  3. 根据任务复杂度决定是否需要进行分解
  4. 监控任务状态变化,及时处理失败任务

总结

CAMEL的任务管理模块为多智能体协作提供了强大的基础设施。通过任务分解、组合和演化等机制,开发者可以构建复杂的协作流程,处理各种现实场景中的问题。该模块的层次化设计和状态管理能力使其特别适合需要多步骤协作解决的复杂任务场景。

camel 🐫 CAMEL: Communicative Agents for “Mind” Exploration of Large Language Model Society (NeruIPS'2023) https://www.camel-ai.org camel 项目地址: https://gitcode.com/gh_mirrors/ca/camel

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郦蜜玲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值