Mutual Affine Network: 用于盲图像超分辨率的开源项目

Mutual Affine Network: 用于盲图像超分辨率的开源项目

MANet Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) MANet 项目地址: https://gitcode.com/gh_mirrors/man/MANet

1. 项目基础介绍

本项目是基于深度学习的盲图像超分辨率技术的一个开源实现,项目链接为 JingyunLiang/MANet。该项目主要使用 Python 编程语言,并基于 PyTorch 深度学习框架进行构建。

2. 项目核心功能

项目的核心是一个名为 Mutual Affine Network (MANet) 的网络结构,用于空间变核估计的盲图像超分辨率。MANet 的主要特点包括:

  • 具有适中的感受野,以保持降质的局部性。
  • 引入了一种新的相互仿射卷积 (MAConv) 层,增强了特征表达性,同时不增加感受野、模型大小和计算负担。

该网络能够有效处理空间变核估计问题,对于由于物体运动和离焦等因素导致的实际图像中的空间变模糊核,MANet 能提供出色的估计效果。

3. 项目最近更新的功能

项目最近更新的功能主要包括:

  • 添加了一个在线 Colab 演示,用于 MANet 核估计的尝试和体验。
  • 发布了有关盲图像超分辨率的新工作,如 SwinIR:基于 Transformer 的图像恢复方法。
  • 引入了用于图像超分辨率和图像缩放统一框架的 Hierarchical Conditional Flow (HCFlow)。
  • 提出了一种针对实际图像超分辨率设计的实用退化模型 BSRGAN。

这些更新进一步扩展了项目的功能和应用范围,为盲图像超分辨率领域的研究和应用提供了更多工具和方法。

MANet Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) MANet 项目地址: https://gitcode.com/gh_mirrors/man/MANet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

霍日江Eagle-Eyed

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值