Determined AI Core API 入门指南:从基础到分布式训练
概述
Determined AI 是一个强大的机器学习平台,其 Core API 为开发者提供了灵活的方式来构建和训练模型。本文将带你从零开始学习如何使用 Core API,通过一个简单的整数递增示例,逐步掌握核心功能。
Core API 核心优势
Core API 作为 Determined 平台的基础 API,具有以下显著优势:
- 指标追踪:轻松记录训练和验证过程中的各项指标
- 检查点管理:支持模型检查点的保存和恢复
- 超参数搜索:内置高级超参数优化功能
- 分布式训练:无缝支持多 GPU 和多节点训练
基础示例:整数递增训练
我们从最简单的示例开始 - 一个循环递增整数的"模型":
# 0_start.py
import logging
def main():
x = 0
max_length = 100
for batch in range(max_length):
x += 1
logging.info(f"x is now {x}")
if __name__ == "__main__":
main()
对应的配置文件 0_start.yaml
只需包含基本配置:
name: core_api_example
entrypoint: python3 0_start.py
指标报告功能
在实际应用中,我们需要向平台报告训练指标。以下是关键步骤:
- 导入 Determined 核心模块
- 配置日志格式
- 使用
core.init
初始化上下文 - 通过上下文对象报告指标
# 1_metrics.py 关键部分
import determined as det
def main(core_context):
x = 0
max_length = 100
for batch in range(max_length):
x += 1
# 每10步报告训练指标
if batch % 10 == 0:
core_context.train.report_training_metrics(
steps_completed=batch,
metrics={"x": x},
)
# 模拟验证过程
if batch % 20 == 0:
core_context.train.report_validation_metrics(
steps_completed=batch,
metrics={"val_x": x},
)
检查点管理
实现检查点功能需要考虑两种场景:
- 暂停后恢复训练(保持批次索引)
- 全新继续训练(重置批次索引)
关键实现要点:
def save_state(core_context, x, batch, trial_id):
with core_context.checkpoint.store_path({"model_data": None}) as path:
state = {"x": x, "batch": batch, "trial_id": trial_id}
torch.save(state, path / "state.pth")
def load_state(checkpoint):
with checkpoint.restore_path() as path:
return torch.load(path / "state.pth")
超参数搜索
Core API 支持高级超参数搜索策略:
# 3_hpsearch.yaml 配置示例
hyperparameters:
increment_by:
type: int
minval: 1
maxval: 5
在训练脚本中获取超参数:
hparams = info.trial.hparams
x += hparams["increment_by"]
分布式训练实现
分布式训练需要特殊处理:
- 使用
allgather
等通信原语 - 主工作节点管理
- 同步预emption检查
关键代码结构:
def worker_main(rank, core_context, increment_by):
# 分布式训练逻辑
all_increment_bys = core_context.distributed.allgather(increment_by)
x += sum(all_increment_bys)
# 仅主节点报告指标
if core_context.distributed.rank == 0:
core_context.train.report_training_metrics(...)
最佳实践建议
- 代码结构:将业务逻辑与平台相关代码分离
- 错误处理:妥善处理分布式环境中的异常
- 资源管理:合理配置 GPU 资源
- 日志优化:使用 Determined 提供的日志格式
总结
通过这个从简单到复杂的示例,我们展示了 Determined Core API 的核心功能。实际应用中,你可以将这些概念扩展到真实的机器学习模型训练中,充分利用平台提供的分布式训练、超参数优化等高级功能。
记住,Core API 的设计理念是提供灵活性而不失强大功能,适合需要高度定制的训练场景。对于常见框架,Determined 也提供了更高级别的 API 封装,可以进一步简化开发流程。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考