Determined AI Core API 入门指南:从基础到分布式训练

Determined AI Core API 入门指南:从基础到分布式训练

determined Determined is an open-source machine learning platform that simplifies distributed training, hyperparameter tuning, experiment tracking, and resource management. Works with PyTorch and TensorFlow. determined 项目地址: https://gitcode.com/gh_mirrors/de/determined

概述

Determined AI 是一个强大的机器学习平台,其 Core API 为开发者提供了灵活的方式来构建和训练模型。本文将带你从零开始学习如何使用 Core API,通过一个简单的整数递增示例,逐步掌握核心功能。

Core API 核心优势

Core API 作为 Determined 平台的基础 API,具有以下显著优势:

  1. 指标追踪:轻松记录训练和验证过程中的各项指标
  2. 检查点管理:支持模型检查点的保存和恢复
  3. 超参数搜索:内置高级超参数优化功能
  4. 分布式训练:无缝支持多 GPU 和多节点训练

基础示例:整数递增训练

我们从最简单的示例开始 - 一个循环递增整数的"模型":

# 0_start.py
import logging

def main():
    x = 0
    max_length = 100
    for batch in range(max_length):
        x += 1
        logging.info(f"x is now {x}")

if __name__ == "__main__":
    main()

对应的配置文件 0_start.yaml 只需包含基本配置:

name: core_api_example
entrypoint: python3 0_start.py

指标报告功能

在实际应用中,我们需要向平台报告训练指标。以下是关键步骤:

  1. 导入 Determined 核心模块
  2. 配置日志格式
  3. 使用 core.init 初始化上下文
  4. 通过上下文对象报告指标
# 1_metrics.py 关键部分
import determined as det

def main(core_context):
    x = 0
    max_length = 100
    for batch in range(max_length):
        x += 1
        # 每10步报告训练指标
        if batch % 10 == 0:
            core_context.train.report_training_metrics(
                steps_completed=batch,
                metrics={"x": x},
            )
        # 模拟验证过程
        if batch % 20 == 0:
            core_context.train.report_validation_metrics(
                steps_completed=batch,
                metrics={"val_x": x},
            )

检查点管理

实现检查点功能需要考虑两种场景:

  1. 暂停后恢复训练(保持批次索引)
  2. 全新继续训练(重置批次索引)

关键实现要点:

def save_state(core_context, x, batch, trial_id):
    with core_context.checkpoint.store_path({"model_data": None}) as path:
        state = {"x": x, "batch": batch, "trial_id": trial_id}
        torch.save(state, path / "state.pth")

def load_state(checkpoint):
    with checkpoint.restore_path() as path:
        return torch.load(path / "state.pth")

超参数搜索

Core API 支持高级超参数搜索策略:

# 3_hpsearch.yaml 配置示例
hyperparameters:
  increment_by:
    type: int
    minval: 1
    maxval: 5

在训练脚本中获取超参数:

hparams = info.trial.hparams
x += hparams["increment_by"]

分布式训练实现

分布式训练需要特殊处理:

  1. 使用 allgather 等通信原语
  2. 主工作节点管理
  3. 同步预emption检查

关键代码结构:

def worker_main(rank, core_context, increment_by):
    # 分布式训练逻辑
    all_increment_bys = core_context.distributed.allgather(increment_by)
    x += sum(all_increment_bys)
    
    # 仅主节点报告指标
    if core_context.distributed.rank == 0:
        core_context.train.report_training_metrics(...)

最佳实践建议

  1. 代码结构:将业务逻辑与平台相关代码分离
  2. 错误处理:妥善处理分布式环境中的异常
  3. 资源管理:合理配置 GPU 资源
  4. 日志优化:使用 Determined 提供的日志格式

总结

通过这个从简单到复杂的示例,我们展示了 Determined Core API 的核心功能。实际应用中,你可以将这些概念扩展到真实的机器学习模型训练中,充分利用平台提供的分布式训练、超参数优化等高级功能。

记住,Core API 的设计理念是提供灵活性而不失强大功能,适合需要高度定制的训练场景。对于常见框架,Determined 也提供了更高级别的 API 封装,可以进一步简化开发流程。

determined Determined is an open-source machine learning platform that simplifies distributed training, hyperparameter tuning, experiment tracking, and resource management. Works with PyTorch and TensorFlow. determined 项目地址: https://gitcode.com/gh_mirrors/de/determined

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莫骅弘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值