VisualPlanning:用图像进行思考的全新推理范式

VisualPlanning:用图像进行思考的全新推理范式

VisualPlanning VisualPlanning 项目地址: https://gitcode.com/gh_mirrors/vi/VisualPlanning

项目介绍

VisualPlanning 是一项创新的推理研究项目,它提出了一个全新的推理范式:完全通过图像序列进行规划,无需依赖语言。与传统的多模态模型不同,这些模型虽然使用视觉输入,但依然在文本中进行推理。VisualPlanning 则让模型能够直接在视觉领域进行“思考”。该项目提出了一种强化学习框架 VPRL,它在空间导航任务上显著优于基于语言的基线。

项目技术分析

VisualPlanning 的核心技术是 VPRL(Visual Planning Reinforcement Learning)框架,这个框架的核心在于通过图像进行决策和规划。项目采用了一种新颖的两阶段强化学习训练方法:

Stage 1: 策略初始化

这一阶段的目标是获取有效的探索能力,并产生视觉上连贯的输出。在此阶段,模型通过探索不同路径和场景,建立对环境的初步理解。

Stage 2: 视觉规划的强化学习

在第二阶段,模型通过 Group Relative Policy Optimization(GRPO)学习模拟未来的视觉状态,并通过项目提出的 Progress Reward 进行指导,以有效地进行规划。

项目及技术应用场景

VisualPlanning 的应用场景广泛,主要集中在以下几个方面:

FrozenLake

这是一个随机的格子世界,Agent 需要从指定位置出发,安全地找到通往目的地的路径,同时避免落入“陷阱”。

FrozenLake

Maze

在这种场景中,Agent 被给予一个描述迷宫布局的初始图像,Agent 需要从起点(绿色点)穿越迷宫到达终点(红色旗帜)。

Maze

MiniBehaviour

在这个任务中,Agent 首先需要从起点到达打印机并拿起它,然后移动到桌子并将打印机放下。

MiniBehaviour

这些场景模拟了现实世界中可能遇到的问题,如路径规划、任务执行等,VisualPlanning 通过图像推理为这些问题提供了新的解决方案。

项目特点

  1. 创新性:VisualPlanning 是首个完全在视觉领域进行规划和决策的推理范式,为传统的基于文本的多模态模型提供了全新的视角。

  2. 强化学习框架:通过两阶段的强化学习训练,模型能够有效地进行探索和学习,提高决策的准确性和效率。

  3. 广泛的应用场景:从简单的格子世界到复杂的迷宫和任务执行,VisualPlanning 能够处理多种类型的问题。

  4. 可扩展性:VisualPlanning 的框架可以根据不同的应用需求进行扩展和优化,具有很高的灵活性和适应性。

  5. 开源许可:项目遵循 MIT 开源许可,鼓励更多的研究人员和开发者参与和使用。

通过 VisualPlanning,我们不仅为 AI 领域带来了一种全新的思考方式,也为实际应用场景中的问题解决提供了强有力的工具。如果你对图像推理和强化学习感兴趣,不妨尝试使用 VisualPlanning,开启你的视觉规划之旅。

VisualPlanning VisualPlanning 项目地址: https://gitcode.com/gh_mirrors/vi/VisualPlanning

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪炎墨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值