VisualPlanning:用图像进行思考的全新推理范式
VisualPlanning 项目地址: https://gitcode.com/gh_mirrors/vi/VisualPlanning
项目介绍
VisualPlanning 是一项创新的推理研究项目,它提出了一个全新的推理范式:完全通过图像序列进行规划,无需依赖语言。与传统的多模态模型不同,这些模型虽然使用视觉输入,但依然在文本中进行推理。VisualPlanning 则让模型能够直接在视觉领域进行“思考”。该项目提出了一种强化学习框架 VPRL,它在空间导航任务上显著优于基于语言的基线。
项目技术分析
VisualPlanning 的核心技术是 VPRL(Visual Planning Reinforcement Learning)框架,这个框架的核心在于通过图像进行决策和规划。项目采用了一种新颖的两阶段强化学习训练方法:
Stage 1: 策略初始化
这一阶段的目标是获取有效的探索能力,并产生视觉上连贯的输出。在此阶段,模型通过探索不同路径和场景,建立对环境的初步理解。
Stage 2: 视觉规划的强化学习
在第二阶段,模型通过 Group Relative Policy Optimization(GRPO)学习模拟未来的视觉状态,并通过项目提出的 Progress Reward 进行指导,以有效地进行规划。
项目及技术应用场景
VisualPlanning 的应用场景广泛,主要集中在以下几个方面:
FrozenLake
这是一个随机的格子世界,Agent 需要从指定位置出发,安全地找到通往目的地的路径,同时避免落入“陷阱”。
Maze
在这种场景中,Agent 被给予一个描述迷宫布局的初始图像,Agent 需要从起点(绿色点)穿越迷宫到达终点(红色旗帜)。
MiniBehaviour
在这个任务中,Agent 首先需要从起点到达打印机并拿起它,然后移动到桌子并将打印机放下。
这些场景模拟了现实世界中可能遇到的问题,如路径规划、任务执行等,VisualPlanning 通过图像推理为这些问题提供了新的解决方案。
项目特点
-
创新性:VisualPlanning 是首个完全在视觉领域进行规划和决策的推理范式,为传统的基于文本的多模态模型提供了全新的视角。
-
强化学习框架:通过两阶段的强化学习训练,模型能够有效地进行探索和学习,提高决策的准确性和效率。
-
广泛的应用场景:从简单的格子世界到复杂的迷宫和任务执行,VisualPlanning 能够处理多种类型的问题。
-
可扩展性:VisualPlanning 的框架可以根据不同的应用需求进行扩展和优化,具有很高的灵活性和适应性。
-
开源许可:项目遵循 MIT 开源许可,鼓励更多的研究人员和开发者参与和使用。
通过 VisualPlanning,我们不仅为 AI 领域带来了一种全新的思考方式,也为实际应用场景中的问题解决提供了强有力的工具。如果你对图像推理和强化学习感兴趣,不妨尝试使用 VisualPlanning,开启你的视觉规划之旅。
VisualPlanning 项目地址: https://gitcode.com/gh_mirrors/vi/VisualPlanning
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考