ROCm/HIP中的协作组(Cooperative Groups)编程教程
前言
在GPU编程中,协作组(Cooperative Groups)是一种强大的线程同步和协作机制,它扩展了传统的线程块(thread block)概念,允许开发者定义更灵活的线程分组方式。本文将详细介绍如何在ROCm/HIP环境中使用协作组功能。
协作组基础概念
协作组是HIP编程模型中的一个重要特性,它提供了比传统线程块更细粒度的线程分组控制。主要优势包括:
- 可以在线程块内创建更小的线程组(称为tile)
- 支持跨线程块的协作
- 提供统一的同步机制
- 简化复杂并行算法的实现
开发环境准备
在使用协作组功能前,需要确保:
- 已安装最新版本的ROCm平台
- 确认GPU设备支持协作组功能
- 配置好HIP编译工具链
协作组核心组件
线程组类型
HIP协作组提供了几种主要的线程组类型:
thread_block
:代表整个线程块thread_block_tile
:线程块内的子分区(tile)grid_group
:代表整个网格(跨线程块协作)
关键操作
tiled_partition()
:创建线程块内的子分区sync()
:同步线程组内所有线程thread_rank()
:获取线程在组内的排名size()
:获取线程组的大小
实践示例:并行归约
下面我们通过一个并行归约的例子来演示协作组的实际应用。
主机端参考实现
std::vector<unsigned int> ref_reduced(const unsigned int partition_size,
std::vector<unsigned int> input)
{
const unsigned int input_size = input.size();
const unsigned int result_size = input_size / partition_size;
std::vector<unsigned int> result(result_size);
for(unsigned int i = 0; i < result_size; i++)
{
unsigned int partition_result = 0;
for(unsigned int j = 0; j < partition_size; j++)
{
partition_result += input[partition_size * i + j];
}
result[i] = partition_result;
}
return result;
}
设备端归约核心
__device__ unsigned int reduce_sum(thread_group g, unsigned int* x, unsigned int val)
{
const unsigned int group_thread_id = g.thread_rank();
for(unsigned int i = g.size() / 2; i > 0; i /= 2)
{
x[group_thread_id] = val;
g.sync();
if(group_thread_id < i)
{
val += x[group_thread_id + i];
}
g.sync();
}
return (g.thread_rank() == 0) ? val : 0;
}
内核实现分解
- 初始化阶段
thread_block thread_block_group = this_thread_block();
__shared__ unsigned int workspace[2048];
unsigned int output;
const unsigned int input = d_vector[thread_block_group.thread_rank()];
// 创建16线程的自定义分区
thread_block_tile<16> custom_partition = tiled_partition<16>(thread_block_group);
- 线程块级归约
output = reduce_sum(thread_block_group, workspace, input);
if(thread_block_group.thread_rank() == 0)
{
d_block_reduced_vector[0] = output;
}
- 自定义分区级归约
output = reduce_sum(custom_partition, &workspace[group_offset], input);
if(custom_partition.thread_rank() == 0)
{
const unsigned int partition_id = thread_block_group.thread_rank() / 16;
d_partition_reduced_vector[partition_id] = output;
}
主机端关键步骤
1. 检查设备支持
int device = 0;
int supports_coop_launch = 0;
HIP_CHECK(hipGetDevice(&device));
HIP_CHECK(hipDeviceGetAttribute(&supports_coop_launch,
hipDeviceAttributeCooperativeLaunch,
device));
if(!supports_coop_launch)
{
std::cout << "设备不支持协作组" << std::endl;
return 0;
}
2. 配置协作组参数
constexpr unsigned int num_blocks = 1;
constexpr unsigned int threads_per_block = 64;
constexpr unsigned int partition_size = 16;
static_assert(threads_per_block % partition_size == 0,
"线程数必须是分区大小的整数倍");
3. 启动协作内核
void* params[] = {&d_vector, &d_block_reduced, &d_partition_reduced};
HIP_CHECK(hipLaunchCooperativeKernel(vector_reduce_kernel<16>,
dim3(num_blocks),
dim3(threads_per_block),
params,
0,
hipStreamDefault));
性能优化建议
- 共享内存使用:合理分配共享内存大小,避免bank冲突
- 分区大小选择:根据算法特性选择最优的分区大小
- 同步开销:尽量减少不必要的同步操作
- 负载均衡:确保各分区工作量均衡
常见问题排查
- 内核启动失败:检查设备是否支持协作组,参数配置是否正确
- 结果不正确:验证同步操作是否到位,共享内存访问是否冲突
- 性能不佳:尝试调整分区大小和线程块配置
总结
协作组为HIP编程提供了更灵活的线程组织方式,特别适合需要复杂线程协作的算法。通过本教程,您应该已经掌握了:
- 协作组的基本概念和类型
- 如何创建和使用线程分区
- 协作内核的配置和启动方法
- 实际应用中的注意事项
协作组功能在图像处理、数值计算、机器学习等领域都有广泛应用,掌握这一技术将大大提升您的GPU编程能力。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考