ROCm/HIP中的协作组(Cooperative Groups)编程教程

ROCm/HIP中的协作组(Cooperative Groups)编程教程

HIP HIP: C++ Heterogeneous-Compute Interface for Portability HIP 项目地址: https://gitcode.com/gh_mirrors/hi/HIP

前言

在GPU编程中,协作组(Cooperative Groups)是一种强大的线程同步和协作机制,它扩展了传统的线程块(thread block)概念,允许开发者定义更灵活的线程分组方式。本文将详细介绍如何在ROCm/HIP环境中使用协作组功能。

协作组基础概念

协作组是HIP编程模型中的一个重要特性,它提供了比传统线程块更细粒度的线程分组控制。主要优势包括:

  1. 可以在线程块内创建更小的线程组(称为tile)
  2. 支持跨线程块的协作
  3. 提供统一的同步机制
  4. 简化复杂并行算法的实现

开发环境准备

在使用协作组功能前,需要确保:

  1. 已安装最新版本的ROCm平台
  2. 确认GPU设备支持协作组功能
  3. 配置好HIP编译工具链

协作组核心组件

线程组类型

HIP协作组提供了几种主要的线程组类型:

  1. thread_block:代表整个线程块
  2. thread_block_tile:线程块内的子分区(tile)
  3. grid_group:代表整个网格(跨线程块协作)

关键操作

  • tiled_partition():创建线程块内的子分区
  • sync():同步线程组内所有线程
  • thread_rank():获取线程在组内的排名
  • size():获取线程组的大小

实践示例:并行归约

下面我们通过一个并行归约的例子来演示协作组的实际应用。

主机端参考实现

std::vector<unsigned int> ref_reduced(const unsigned int partition_size,
                                    std::vector<unsigned int> input)
{
    const unsigned int input_size = input.size();
    const unsigned int result_size = input_size / partition_size;
    std::vector<unsigned int> result(result_size);

    for(unsigned int i = 0; i < result_size; i++)
    {
        unsigned int partition_result = 0;
        for(unsigned int j = 0; j < partition_size; j++)
        {
            partition_result += input[partition_size * i + j];
        }
        result[i] = partition_result;
    }
    return result;
}

设备端归约核心

__device__ unsigned int reduce_sum(thread_group g, unsigned int* x, unsigned int val)
{
    const unsigned int group_thread_id = g.thread_rank();
    
    for(unsigned int i = g.size() / 2; i > 0; i /= 2)
    {
        x[group_thread_id] = val;
        g.sync();
        
        if(group_thread_id < i)
        {
            val += x[group_thread_id + i];
        }
        
        g.sync();
    }

    return (g.thread_rank() == 0) ? val : 0;
}

内核实现分解

  1. 初始化阶段
thread_block thread_block_group = this_thread_block();
__shared__ unsigned int workspace[2048];
unsigned int output;
const unsigned int input = d_vector[thread_block_group.thread_rank()];

// 创建16线程的自定义分区
thread_block_tile<16> custom_partition = tiled_partition<16>(thread_block_group);
  1. 线程块级归约
output = reduce_sum(thread_block_group, workspace, input);
if(thread_block_group.thread_rank() == 0)
{
    d_block_reduced_vector[0] = output;
}
  1. 自定义分区级归约
output = reduce_sum(custom_partition, &workspace[group_offset], input);
if(custom_partition.thread_rank() == 0)
{
    const unsigned int partition_id = thread_block_group.thread_rank() / 16;
    d_partition_reduced_vector[partition_id] = output;
}

主机端关键步骤

1. 检查设备支持

int device = 0;
int supports_coop_launch = 0;
HIP_CHECK(hipGetDevice(&device));
HIP_CHECK(hipDeviceGetAttribute(&supports_coop_launch, 
                              hipDeviceAttributeCooperativeLaunch, 
                              device));
if(!supports_coop_launch)
{
    std::cout << "设备不支持协作组" << std::endl;
    return 0;
}

2. 配置协作组参数

constexpr unsigned int num_blocks = 1;
constexpr unsigned int threads_per_block = 64;
constexpr unsigned int partition_size = 16;

static_assert(threads_per_block % partition_size == 0,
             "线程数必须是分区大小的整数倍");

3. 启动协作内核

void* params[] = {&d_vector, &d_block_reduced, &d_partition_reduced};
HIP_CHECK(hipLaunchCooperativeKernel(vector_reduce_kernel<16>,
                                   dim3(num_blocks),
                                   dim3(threads_per_block),
                                   params,
                                   0,
                                   hipStreamDefault));

性能优化建议

  1. 共享内存使用:合理分配共享内存大小,避免bank冲突
  2. 分区大小选择:根据算法特性选择最优的分区大小
  3. 同步开销:尽量减少不必要的同步操作
  4. 负载均衡:确保各分区工作量均衡

常见问题排查

  1. 内核启动失败:检查设备是否支持协作组,参数配置是否正确
  2. 结果不正确:验证同步操作是否到位,共享内存访问是否冲突
  3. 性能不佳:尝试调整分区大小和线程块配置

总结

协作组为HIP编程提供了更灵活的线程组织方式,特别适合需要复杂线程协作的算法。通过本教程,您应该已经掌握了:

  1. 协作组的基本概念和类型
  2. 如何创建和使用线程分区
  3. 协作内核的配置和启动方法
  4. 实际应用中的注意事项

协作组功能在图像处理、数值计算、机器学习等领域都有广泛应用,掌握这一技术将大大提升您的GPU编程能力。

HIP HIP: C++ Heterogeneous-Compute Interface for Portability HIP 项目地址: https://gitcode.com/gh_mirrors/hi/HIP

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穆灏璞Renata

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值