开源项目 Parklife 使用教程

开源项目 Parklife 使用教程

parklifeRender a Rack app (Rails/Sinatra/etc) to a static build so it can be served by Netlify, Now, GitHub Pages, S3, or any other web server.项目地址:https://gitcode.com/gh_mirrors/pa/parklife

1. 项目的目录结构及介绍

parklife/
├── README.md
├── bin/
│   └── parklife
├── lib/
│   └── parklife.rb
├── config/
│   └── parklife.yml
├── spec/
│   └── parklife_spec.rb
└── Gemfile
  • README.md: 项目说明文件,包含项目的基本信息和使用指南。
  • bin/: 存放可执行文件的目录,其中 parklife 是项目的启动文件。
  • lib/: 存放项目的主要代码文件,parklife.rb 是项目的主文件。
  • config/: 存放配置文件的目录,parklife.yml 是项目的配置文件。
  • spec/: 存放测试文件的目录,parklife_spec.rb 是项目的测试文件。
  • Gemfile: 项目依赖管理文件,定义了项目所需的 gem 包。

2. 项目的启动文件介绍

项目的启动文件位于 bin/ 目录下,文件名为 parklife。该文件是一个可执行脚本,用于启动项目。

#!/usr/bin/env ruby

require 'parklife'

Parklife.start
  • #!/usr/bin/env ruby: 指定使用 Ruby 解释器来执行该脚本。
  • require 'parklife': 引入项目的主文件 lib/parklife.rb
  • Parklife.start: 调用 Parklife 模块的 start 方法来启动项目。

3. 项目的配置文件介绍

项目的配置文件位于 config/ 目录下,文件名为 parklife.yml。该文件用于配置项目的各种参数。

default: &default
  log_level: info
  port: 3000

development:
  <<: *default
  log_level: debug

production:
  <<: *default
  log_level: error
  • default: 默认配置,包含 log_levelport 两个参数。
  • development: 开发环境配置,继承默认配置并修改 log_leveldebug
  • production: 生产环境配置,继承默认配置并修改 log_levelerror

以上是开源项目 Parklife 的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!

parklifeRender a Rack app (Rails/Sinatra/etc) to a static build so it can be served by Netlify, Now, GitHub Pages, S3, or any other web server.项目地址:https://gitcode.com/gh_mirrors/pa/parklife

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

范凡灏Anastasia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值